|
对于较大的 k 值,符号 m,n 计算可能非常慢,因此提供了数值版本- (* Define the matrix with binomial coefficients *)
- (* The matrix is k×k where each element (i,j) is Binomial[n+m, n+1-i+j-1] *)
- BinomialMatrix[n_, m_, k_] := Table[
- Binomial[n + m, n - i + j],
- {i, k}, {j, k}
- ]
- (* Calculate the determinant *)
- BinomialDeterminant[n_, m_, k_] := Det[BinomialMatrix[n, m, k]]
- (* Example usage with specific values *)
- (* For a 3×3 matrix with n=2, m=3, k=3 *)
- exampleMatrix = BinomialMatrix[2, 3, 3]
- exampleDet = BinomialDeterminant[2, 3, 3]
- Print["Example 3×3 matrix:"]
- Print[exampleMatrix // MatrixForm]
- Print["Determinant: ", exampleDet]
- (* General symbolic computation (for small k) *)
- (* Note: For large k, this may take a long time to compute symbolically *)
- GeneralDeterminant[k_] := Det[Table[
- Binomial[n + m, n - i + j],
- {i, k}, {j, k}
- ]]
- (* For numerical evaluation with specific parameters *)
- NumericalDeterminant[nVal_, mVal_, kVal_] :=
- Det[Table[Binomial[nVal + mVal, nVal + 1 - i + j - 1], {i, 1, kVal}, {j, 1, kVal}]]
- (* Test with some small values *)
- Print["Determinant for k=2: ", GeneralDeterminant[2]]
- Print["Determinant for k=3: ", GeneralDeterminant[3]]
- (* For larger matrices, use numerical values *)
- Print["Numerical example (n=5, m=4, k=5): ",
- NumericalDeterminant[5, 4, 5]]
Copy the Code |
|