Forgot password
 Register account

Pure Mathematics Today: 0|Threads: 960|Rank: 11 

Author Replies
Views
Last post
[分析/方程] 柯西方程的条件

设函数 $f(x)$ 满足:$\forall x, y \inR, f(x+y)=f(x)+f(y)$.若 $f(x)$ 有唯一解 $f(x)=f(1) \cdot x$,则 $f(x)$ 需要满足什么条件? (换言之,加什么样的条件才能保证没有另外的解,比如不连续函数、病态函数?)

APPSYZY 2017-11-5 11:46 21083 hbghlyj 2025-6-9 18:52
[几何/拓扑] 完备 黎曼流形

Hyperbolic metric geodesically complete Consider the upper half plane model of the hyperbolic space ($\mathbb{H}$ with the riemannian metric $g=\frac{dx^2+dy^2}{y^2}$). It is known that $(\mathbb{H},g)$ is geodesically complete, which means that no geodesic can reach the border $\partial \mathbb{H}$

hbghlyj 2023-11-6 18:47 4290 hbghlyj 2025-6-9 11:49
[分析/方程] 带阻尼项的一维波动方程的解的衰减估计

用分离变量法求解如下受外部阻尼力的弦振动方程的初边值问题 \[ \begin{cases}\partial_t^2 u-\partial_x^2 u+\partial_t u=0, & (t, x) \in(0,+\infty) \times(0, L), \\ u(0, x)=\varphi(x), \partial_t u(0, x)=\psi(x), & x \in(0, L), \\ u(t, 0)=u(t, L)=0, & t \in(0,+\infty) .\end{cases} \] 并说明当 $t \rightar

etoile 2023-5-31 14:24 2263 hbghlyj 2025-6-9 10:30
[代数/数论] no point of ${\cal E}(\Bbb Q_p)$ reducing to $(0,0)∈\tilde{\cal E}(\Bbb F_p)$

[*]To show there is no point of \(\mathcal{E}(\mathbb{Q}_p)\) reducing to the singular point \((0,0) \in \widetilde{\mathcal{E}}_p(\mathbb{F}_p)\), consider the reduction map: \[ \mathrm{red}: \mathcal{E}(\mathbb{Q}_p) \to \widetilde{\mathcal{E}}_p(\mathbb{F}_p). \] A point \((x, y) \in \mathcal{E}(

hbghlyj 2025-6-9 09:20 07 hbghlyj 2025-6-9 09:20
[代数/数论] hyperbolic elements in $\text{SL}_2(\Bbb Z)$

A hyperbolic element in $\text{SL}_2(\Bbb Z)$ is a matrix with trace absolute value greater than 2 https://gr.inc/question/given-sl_2mathbbz-what-interpretation-is-available-for-the-hyperbolic-e They correspond to hyperbolic isometries of the upper half-plane, acting as translations along geodesic a

hbghlyj 2025-6-6 02:41 0103 hbghlyj 2025-6-6 02:41
[代数/数论] half-integral weight modular forms defined on congruence subgroups of level 4N

I remember that modular forms of integral weight are defined on congruence subgroups like Γ₀(N) or Γ₁(N), but for half-integral weights, things are different. The primary reason is to ensure the existence of a consistent set of square roots https://gr.inc/question/explain-why-half-integral-weigh

hbghlyj 2025-6-6 02:36 05 hbghlyj 2025-6-6 02:36
[几何/拓扑] a connected Lie group $G$ is generated by any neighborhood of the identity

Let $ U $ be an arbitrary neighborhood of the identity $ e \in G $. Define $ S = \langle U \rangle $, the subgroup generated by $ U $. Explicitly, $ S $ consists of all finite products of elements from $ U $ and their inverses: $$S = \{ u_1 u_2 \cdots u_n \mid u_i \in U \cup U^{-1}, \, n \in \mathbb

hbghlyj 2025-6-5 15:26 0203 hbghlyj 2025-6-5 15:26
[代数/数论] Proof of Lie's Third Theorem Using Ado's Theorem

Lie's Third Theorem: For every finite-dimensional real or complex Lie algebra $\mathfrak{g}$, there exists a unique (up to isomorphism) simply connected Lie group $G$ whose Lie algebra is isomorphic to $\mathfrak{g}$. Proof:[*]Apply Ado's Theorem: By Ado's Theorem, there exists a finite-dimension

hbghlyj 2025-6-5 14:49 03 hbghlyj 2025-6-5 14:49
[代数/数论] nilpotent Lie algebra can be represented by strictly upper triangular matrices

Prove that every nilpotent Lie algebra in characteristic zero can be represented by strictly upper triangular matrices. You may use Ado's theorem and consider the case where the field is algebraically closed and the case where the field is arbitrary. https://gr.inc/question/prove-that-every-nilpote

hbghlyj 2025-6-5 14:41 00 hbghlyj 2025-6-5 14:41
[几何/拓扑] n维球测度

Consider the unit $n$-ball $B^n$ and unit $(n+1)$-sphere $S^{n+1}$: $$ \begin{aligned} B^n & =\left\{x=\left(x_1, \ldots, x_n\right) \in \mathbb{R}^n: x_1^2+\cdots+x_n^2 \leqslant 1\right\} \\ S^{n+1} & =\left\{x=\left(x_1, \ldots, x_{n+2}\right) \in \mathbb{R}^{n+2}: x_1^2+\cdots+x_{n+2}^2=1\right\

hbghlyj 2025-6-5 00:00 4954 hbghlyj 2025-6-5 01:38
Closed form of the sum $\sum_{n=1}^\infty q^{-n^2} z^n$ for $|z|<1$

The closed form of the sum $\sum_{n=1}^\infty q^{-n^2} z^n$ for $|z|<1$ is given by: \[ \frac{z e^{-z/\sqrt{q}}}{1 - e^{-z/\sqrt{q}}} \] https://gr.inc/question/find-the-closed-form-of-the-summation-sum_n1infty-q-n2-zn-where/

hbghlyj 2025-6-2 22:02 02526 hbghlyj 2025-6-2 22:02
[代数/数论] 四次Pell方程的一类参数特解

\begin{gather*} \left\{\begin{split} p&=18x^{6}-9(4+\sqrt{3})x^{4}+9(2+\sqrt{3})x^{2}-3-2\sqrt{3}\\ q&=3x(6x^{4}-(9+2\sqrt{3})x^{2}+2+\sqrt{3})\\ r&=3x^{2}(6x^{2}-\sqrt{3}-6)\\ s&=9x(2x^{2}-1)\\ y&=((x^{2}-1)(x^{2}-\frac{3+2\sqrt{3}}{3}))^{1/4} \end{split}\right.\\ \\ 9(97+56\sqrt{3})=\prod_{k=1}^{

青青子衿 2025-5-31 18:07 14046 青青子衿 2025-6-1 10:21
[几何/拓扑] ∄ closed minimal surface in $\Bbb R^3$

https://gr.inc/question/show-that-there-is-no-closed-minimal-surface-in-r3/ Suppose for contradiction that there exists a closed (i.e. compact without boundary) minimal surface $\Sigma$ immersed in $\mathbb{R}^3$. Let $x = (x_1, x_2, x_3)$ be the position vector of the immersion. A key fact about mi

hbghlyj 2025-6-1 05:36 0505 hbghlyj 2025-6-1 05:36
numerical integration formula, determine the parameter α to maximize precision

https://mathematica.stackexchange.com/q/232830

hbghlyj 2025-5-29 23:20 01818 hbghlyj 2025-5-29 23:20
[几何/拓扑] if two representations have the same character, they are isomorphic

Let $G$ be a compact Lie group, and $\rho_1, \rho_2$ be finite-dimensional complex representations with $\chi_{\rho_1} = \chi_{\rho_2}$. By the complete reducibility theorem, every finite-dimensional representation of $G$ decomposes into a direct sum of irreducible representations. Write: $$\rho_1 \

hbghlyj 2025-5-28 23:51 11720 hbghlyj 2025-5-28 23:53
一个涉及下降阶乘和移位算子的算子乘积的展开式

在 Math StackExchange 上讨论了一个特定的算子乘积展开式的问题。 提问者考虑如下的算子乘积: $$ \prod_{j=0}^{n-1} \sum_{i=0}^{s}(n-j-s+i)_i E^i $$ 其中,$(x)_n$ 表示下降阶乘(falling factorial),$E$ 是定义为 $Ef(s) = f(s-1)$ 的移位算子。ChatGPT 展开该表达式,得到: $$ \sum_{m=0}^{ns}\sum_{\substack{i

hbghlyj 2025-5-28 18:38 0304 hbghlyj 2025-5-28 18:38
[几何/拓扑] left-invariant vector fields commute with right-invariant vector fields

https://math.stackexchange.com/questions/295758 The Lie bracket of a left-invariant vector field $X_L$ and a right-invariant vector field $X_R$ on a Lie group $G$ vanishes. Proof: The flow $\phi_t^{X_L}$ of $X_L$ is given by right multiplication: $\phi_t^{X_L}(g) = g \exp(tA)$, where $A = X_L(e) \in

hbghlyj 2025-5-27 04:20 01212 hbghlyj 2025-5-27 18:03
[分析/方程] 积分不等式

设有定义在$[0,1]$内的函数$f(x)$能展开为三角级数: $$f(x)=\sum_{k=0}^{\infty} a_k cos(2k+1)\pi x,$$ 其中$a_k\geq 0。$ 求证 $$\int_{0}^{1} (1-|x-t|)f(t) dt\leq \frac{1}{4}\underset{n\in \mathbb{N}}{max}|a_n|.$$

血狼王 2016-3-22 23:58 03309 血狼王 2025-5-25 20:15
[代数/数论] How many natural cotransformations are there between F and G?

来自https://news.ycombinator.com/item?id=42913867 The set of natural transformations between two functors $F,G\colon\mathcal{C}\to\mathcal{D}$ can be expressed as the end $$\mathrm{Nat}(F,G)\cong\int_{A}\mathrm{Hom}_{\mathcal{D}}(F(A),G(A)).$$Define set of natural cotransformations from $F$ to $G$

hbghlyj 2025-5-24 04:19 02727 hbghlyj 2025-5-24 04:19
$\sum_{n=1}^\infty \frac{n^n}{e^nn!}$发散

相邻比值趋于1,比值审敛法无法判断 SumConvergence[n^n/E^n/n!, n]

hbghlyj 2023-8-8 09:53 23145 hbghlyj 2025-5-24 01:56
[代数/数论] 三次代数整数与行列式

\begin{align*} N\left(u+v\sqrt[3]{t}+w\sqrt[3]{t^2}\,\right)&=u^3+tv^3+t^2w^3-3tuvw\\ N\left(U+V\sqrt[3]{t}+W\sqrt[3]{t^2}\,\right)&=U^3+tV^3+t^2W^3-3tUVW\\ N(\alpha)N(\beta)&=N(\alpha\beta) \end{align*} The Euclidean Condition in Pure Cubic and Complex Quartic Fields \begin{gather*} \begin{vmatrix

青青子衿 2023-1-19 18:55 57370 青青子衿 2025-5-22 07:54
[几何/拓扑] Curvature and Fundamental Groups

Mock Exam [*]Prove each of the following statements for a compact manifold $M$ of dimension $n \geqslant 2$. [*]If $M$ admits a Riemannian metric $g$ with sectional curvature $K \leqslant 0$ then $M$ has an infinite fundamental group. [*]If $M$ admits a Riemannian metric with sectional curvature $K>

hbghlyj 2025-5-22 03:53 12225 hbghlyj 2025-5-22 04:06
[几何/拓扑] Jacobi fields, conjugate locus in hyperbolic plane

Mock Exam Let $\gamma:[0, L]\to(M, g)$ be a normalised geodesic in a Riemannian manifold $(M, g)$ with Riemann curvature $R$. [*]Define what is meant by a Jacobi field along $\gamma$. [*]Let $J$ be a Jacobi field along $\gamma$ with $J(0)=0,|J'(0)|=1$ and $g(J'(0), \gamma'(0))=0$. [*]Show that \[ g(

hbghlyj 2025-5-21 05:48 11354 hbghlyj 2025-5-21 08:52
[几何/拓扑] Product of metrics of constant sectional curvature

Mock Exam Let $(M_j, g_j)$ be complete Riemannian manifolds of dimension $n_j \geqslant 2$ for $j=1,2$ and let $M=M_1 \times M_2$. Given that $T_{(p_1, p_2)}(M_1 \times M_2) \cong T_{p_1} M_1 \times T_{p_2} M_2$ for all $(p_1, p_2) \in M_1 \times M_2$, we define a section $g$ of $S^2 T^*(M_1 \times

hbghlyj 2025-5-21 03:33 11014 hbghlyj 2025-5-21 03:41
[几何/拓扑] 仿射簇的乘積的拓樸不是它們的Zariski拓樸的乘積拓樸

两个仿射簇(或仿射概形)$\DeclareMathOperator{\Spec}{Spec}\def\A{\mathbb{A}}$$$X = \Spec A,\quad Y = \Spec B$$的积$X\times Y$,被定义为$\Spec(A\otimes B)$,其上的 Zariski 拓扑由 $A\otimes B$ 中任意元素的零点集合生成,而不是由单纯的“各自 Zariski 拓扑的积拓扑”生成。结果是,$\Spec(A\otimes B)$ 的闭集

hbghlyj 2025-5-19 19:12 12556 hbghlyj 2025-5-19 19:21
[概率/统计] 用蒙特卡洛法求积分

请教各位怎么用蒙特卡洛法求如下积分呢?其中 $W^2, Z$ 是两个独立的标准布朗运动(伊藤积分),$\sigma_t:=\sqrt v_t$. 第二个积分等式是类似用回归来做吗? \begin{gathered} X_t=\log x+\int_0^t\left(b-\frac{v_s}{2}\right) \mathrm{d} s+\rho \int_0^t \sqrt{v_s} \mathrm{~d} W_s^2+\sqrt{1-\rho^2} \int_0^t \sqrt{

opuikl_0 2017-6-30 21:53 01747 opuikl_0 2025-5-19 15:12
后两类椭圆积分的加法

\begin{align*} &\quad\phantom{=}\int_{0}^{u}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t} +\int_{0}^{v}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}\\ &=\int_{0}^{w}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}-\frac{4A(A+\chi)uvw}{(u^{2}+A)(v^{2}+A)(w^{2}+

青青子衿 2025-3-23 11:40 46923 青青子衿 2025-5-19 05:27
[概率/统计] SDE 有无解判断
SDE

(1)证明 SDE $dX_t=X_t^3dt+X_t^2dW_t$ 无解. (2)证明 SDE $dX_t=3X_t^\frac{1}{3}dt+3X_t^\frac{2}{3}dW_t, X_0=0$ 有无数个解.

opuikl_0 2017-4-19 15:21 13243 hbghlyj 2025-5-19 04:59
$1/\sqrt[3]{x^3-3 x^2-3 x-1}$不定积分

https://blog.wolfram.com/2021/08/18/new-methods-for-computing-algebraic-integrals/ For example, the following integral possesses an elementary (albeit enormous) solution:$$\int \frac{d x}{\sqrt[3]{x^3-3 x^2-3 x-1}}$$

hbghlyj 2024-12-19 06:42 45944 青青子衿 2025-5-18 14:51
含三角函数的几个极限

1.$\lim_{n \to \infty}{\frac{1}{\ln n}\sum_{k=1}^n\abs{\frac{sin{kx}}{k}}}$是否存在?存在的话极限是多少?如果把正弦换为余弦又会怎样? 2.$\lim_{n \to \infty}{\frac{1}{n}\sum_{k=1}^n\abs{sin{kx}}}$是否存在?存在的话极限是多少?如果把正弦换为余弦又会怎样? 谢了!

dim 2016-4-13 12:34 01721 dim 2025-5-17 19:04
Next »

Quick post

You can still enter 80 characters
Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can post Login | 注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-22 14:32 GMT+8

Powered by Discuz!

Processed in 0.014521 seconds, 17 queries