PSYCHOMETRIKA—VOL. 14, N0, 1
MARCH, 1949

A METHOD OF MATRIX ANALYSIS OF GROUP STRUCTURE

R. DUNCAN LUCE AND ALBERT D. PERRY

GRADUATE STUDENTS, DEPARTMENT OF MATHEMATICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Matrix methods may be applied to the analysis of experimental
data concerning group structure when these data indicate relation-
ships which can be depicted by line diagrams such as sociograms.
One may introduce two concepts, n-chain and clique, which have sim-
ple relationships to the powers of certain matrices. Using them it
is possible to determine the group structure by methods which are
both faster and more certain than less systematic methods. This
paper describes such a rmatrix method and applies it to the analysis
of practical examples. At several points some unsolved problems in
this field are indicated.

1. Introduction

In a number of branches of the social sciences one encounters
problems of the analysis of relationships between the elements of a
group. Frequently the results of these investigations may be pre-
sented in diagrammatic form as sociograms, organization charts,
flow charts, and the like. When the data to be analyzed are such that
a diagram of this type may be drawn, the analysis and presentation
of the results may be greatly expedited by using matrix algebra. This
paper presents some of the results of an investigation of this appli-
cation of matrices. Initial trials in the determination of group strue-
tures indicate that the matrix method is not only faster but also less
prone to error than manual investigation.*

The second section of this paper presents certain concepts used
in the analysis and associates matrices with the group in question.
The third states the results obtained and the fourth gives illustra-
tions of their application. Finally, section five contains a mathemati-
cal formulation of the theory and derivation of the results presented
in section three.

2. Definitions
2.01. The types of relationships which this method will handle
are: man a chooses man b as a friend, man ¢ commands man b, ¢ sends
messages to b, and so forth. Since in a given problem we concern
*Some of these examples have been worked out by the Research Center for

Group Dynamics, Massachusetts Institute of Technology, in conjunction with
some of its research.
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ourselves with one sort of relation, no confusion arises from replac-
ing the description of the relationship by a symbol = >. Thus, in-
stead of “man 7 chooses man 7 as a friend,” we write “4=> 7. If, on
the other hand, man ¢ had not chosen man 7, we would have written
“¢ = > 4,7 using the symbol ¥ > to indicate the negation of the rela-
tionship denoted by = > .

2.02. Situations such as mutual choice of friends or two-way com-
munication would thus be indicated by ¢ = > j and j = > 4, or briefly,
13 < = > 4. We describe such situations by saying that a symmetry
exists between 7 and 4.

2.03. When the choice is not mutual, that isi1=> jor j = > ¢
but not both, we say an aniimetry exists between ¢ and j.

2.04.%* The data to be analyzed are presented in a matrix X as
follows: the 7,7 entry (z:;) has the value of 1 if ¢ == > § and the value
0 if { % > j. For convenience we place the main diagonal terms equal
to zero, i.e., 2;; == 0 for all 4. This convention, 1 ¥ > ¢, does not re-
strict the applicability of the method, since there is little significance
in such statements as “Jones chooses himself as a friend.”

Suppose, for example, that we had a group of four members with
the following relationships: e =>b,b=>a,b=>d,d=> Db,
c=>gq,c=>b,d=> @, and 4= > ¢. All other possible combina-
tions of a,b,c, and d are related by the symbol = > . The X matrix
associated with this group is:

d

1|
0 ]

2.05. From the X matrix we extract a symmetric matrix S hav-
ing entries s;; determined by s;; = s;; = 1 if 2;; = 2;; = 1, and other-
wise 8;; = 8;; = 0. All the symmetries in the group are indicated in
the matrix S. The S matrix associated with the above X matrix is:

Qo Ta

- SR
et b D e O
OO ©

0100
1001]
00 0 0
010 0

*In the course of the present work it was brought to our attention that in
“A matrix approach tc the analysis of sociometric data,” Sociometry, 1946, 9,
340-347, Elaine Forsyth and Leo Katz have used matrices to represent socio-
metric relations. They considered a three-valued logic rather than the present
two-valued one, and the operations on the matrices are different from the ones
discussed in this paper.
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To indicate the ¢,j entry of the matrix X», which is the n®
power of X, we shall employ the symbol x;;. Similarly, the ¢,j en-
try of S* is s;,;™.

2.06. In the group considered above, we had a=>b,b=>d,
and d = > ¢ as three of the relations. If the symbol = > indicates the
relationship “sends messages to,” it appears that ¢ can send a mes-
sage to ¢ in three steps, via b and ¢. We call this three-step path a
8-chain from a to ¢. Rather than writing out the above sequence of
relations, we may omit the symbol = > and simply write the 8-chain
as a,b,d,c.

In a group involving more elements one might have the 5-chains:
a,6,6b,d,f and a,d,b,c,d,e. We notice that the first sequence involves
five steps between six elements of the group. The second sequence
also involves five steps but only five elements of the group, since the
element d appears as both the second and fifth member of the se-
quence. Thus, although these two five-step sequences contain differ-
ent numbers of elements of the group, they both have six members.
Using this concept of membership in a sequence, an n-slep sequence
has n-+1 members.

These examples of 3-chains and 5-chains suggest a general defi-
nition for a property within the group: an ordered sequence with n+1
members, i,a,b,-,9,4q,7,is an n-chain from 1 to j if and only if

’i:>“;“:>b,"';p:>(1:q:>i-

2.07. When two m-chains have the same elements in the same
order, i.e., the same members, then they are said to be equal, and
otherwise they are distinet. It is important in this definition of equal-
ity that it be recognized that both the elements of the group and their
order in the sequence are considered. The two chains 7,7,k,lLp and
i,p,k,7,] are distinct though they contain the same five elements.

2.08. When the same element oceurs more than once in an
n-chain, the n-chain is said to be redundant. (Thus, in a group of m
elements any n-chain with n greater than m is redundant). The chains
a,b,e,d,b,c and @,c,0,b,d,c,e are, for example, both redundant, for the
element b occurs twice in the former and the elements ¢ and ¢ both
occur twice in the latter. An example of a non-redundant 5-chain is
a'}d’p)b!QJj .

2.09. A subset of the group forms a cligue provided that it con-
sigts of three or more members each in the symmetric relation to
each other member of the subset, and provided further that there
can be found no element outside the subset that is in the symmetric
relation to each of the elements of the subset. The application of this
definition to the concept of friendship is immediate: it states that a
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set of more than two people form a clique if they are all mutual
friends of one another. In addition, the definition specifies that sub-
sets of cligues are not cliques, so that in a cligue of five friends we
shall not say that any three form a clique. Although the word “clique”
immediately suggests friendship, the definition is useful in the study
of other relationships.

2.10. This definition of cligue has two possible weaknesses:
first, if each element of the group is related by = > fo no more than
¢ other elements of the group, then we ecan detect only cliques with
at most ¢ + 1 members; and second, there may exist within the group
certain tightly knit subgroups which by the omission of a few sym-
metries fail to satisfy the definifion of a cligue but which nonetheless
would be termed, non-technically, “cliques.” It may be possible to
alleviate these difficulties by the introduction of so called “n-cliques”
which comprise the set of 7 elements which form two distinet n-chains
from each element of the set to itself. This requires that the n-chains
be redundant with the only recurring element being the end-point
and also that all the relations in the n-chains be symmetric.

This definition means that the four elements a,b,c, and d form
a 4-clique if the 4-chains (for example) a,b,c,d,a and a,d,c,b,a, both
exist. These by the definition of n-chain require that the relations

a<=>b,b<=2¢,c<=2>d,d<=>q

exist, but nothing is said about the relations between o and ¢, and
b and d. The original definition requires, in addition, that

a<=>¢ and b<=2>(d

for a,b,¢, and d to form a clique of four members. Thus we see that
the definition of n-cligue considers “circles” of symmetries, but it fails
to consider the symmetric “cross” terms that exist between the mem-
bers of the n-cligue. These cross terms will be investigated, however,
by determining whether any m of these n-elements form an m-clique.

The usefulness of the definition of n-clique can be judged only
after experience has been gained in its application. This is not con-
veniently possible at present, unfortunately, because the problem of
the general determination of redundant n-chains has not been solved
{see §5.09).

The most general definition of a clique-like structure including
antimetries will not be discussed, for it is believed that this will not
be amenable {0 a concise mathematical formulation.

3. Statement of Results
8.01. In X» the entry x;;® = ¢ if and only if there are ¢ dis-

3_-
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tinct n~chains from 7 to § (for proof see §5.04). Thus, if in the fifth
power of a matrix of data X we find that the number 9 occurs in the
third row of the seventh column, we may conclude that there are 9
distinet 5-chains from element 8 to element 7.

3.02. In X2 the i** main diagonal entry has the value m if and
only if 4 is in the symmetric relation with m elements of the group
(§5.05). Since by the definition of a clique each element ¢ in a
clique of ¢ members must be in the symmetric relation to each of the
t—1 other elements, it is necessary that z;;® > t—1 for ¢ to be in a
clique of ¢ members. We may not, however, conclude from the fact that
2:® > {—1 that 7 is necessarily contained in a cligue of ¢ members,

3.03. An element ¢ is contained in & clique if and only if the i
entry of the main diagonal of S® is positive (§5.06). The main diag-
onal terms of S* will be either 0 or even positive numbers in all cases,
and when the value of the entry is 0 the associated element is not in
a clique.

3.04. If, in 8%, ¢ entries of the main diagonal have the value
(t—2) (t—1) and all other entries of the main diagonal are zero, then
these t elements form a clique of £ members (§5.08). It also follows
from the next statement (§3.05) that if there is only one clique
of £ members then these ¢ elements will have a main diagonal value
in 8% of ({—2) (i—1). The former statement is, however, the more
significant in analysis, for it is the aim to go from the matrix repre-
sentation to the group structure. There is no difficulty in going from
the structure to the matrices.

3.05. Since by statement 3.08 the main diagonal values of S®
are dependent only on the clique structure of the group, it is to be
expected that a formula relating these values and the cligue strue-
ture is possible. If an element ¢ is contained in m different cliques
each having ¢, members, and if there are d; elements common to the
k™ clique and all the preceding ones, then

5u® = {(t, —2) (b — 1) — (dv—2) (dy—1)} + 2

(§5.07). Thus, if we have three cliques: (5,7,9,10), (1,4,9), and
(1,2,5,9,11), then d, = 0, for there are no preceding cliques; d. = 1;
for only element 9 is common to the second and first cliques; and
d; = 3, for clique three has the elements 1,5, and 9 common with
the. first two cliques. Substituting &, =4,%. =3, =5,d,=0,
d.=1, and d; = 3 and evaluating the formula for element 9, which
is the only one common to all three cliques, we obtain
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S =[(4—2) (4—1) — (0—2) (0 —1)]
T[—2)B—-1)—(1—2)1—1)]
+[(6—2)(5—1)—(3—2)(8—1) ] +2
=18.

In the evaluation of this formula it is immaterial how the cliques are
numbered initially; however, it is essential once the numbering is
chosen that we be consistent.

3.06. The redundant 2-chains of a matrix X are the main diago-
nal entries of X? (§5.09). Thus for a matrix

0 1 0 1 0

0 0 1 1 0

X= 1 0 0 0 1
1 0 0 0 1

11 0 0 0

with the square
1 0 1 1 1
[2 0 0 0 2-]
Xo= 1 2 0 1 0 ,

_ 12010
0 11 2 0

the matrix of redundant 2-chains is

106 0 0 0O
0 06 0 0 O
0 0 0 00
00 01 0
0 0 0 0 O

To obtain the matrix of redundant 3-chains we compute the fol-
lowing matrix, in which the symbol B® stands for the matrix of re-
dundant 2-chains:

XR® 4+ R®X —S .

Deleting in this sum the main diagonal and replacing it by the main
diagonal of X3 gives the matrix of redundant 3-chains (§5.09). If
the main diagonal of XR® + R®X — S is denoted by Y and the
main diagonal of X® by Z®, then let E® = Z® — Y® and thus
the matrix of redundant 3-chains, R®), is given by

R®»=XR® 4+ R&aX 4+ EF® —§ ,

It has not yet been possible to develop formulas which will give
the matrix of redundant n-chains for n larger than 3. What work
that has been done in this direction is presented in §5.09.
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3.07. The several theorems on cliques give a method that to some
extent determines the clique structure independent of the rest of the
group structure. It would be desirable to find a simple scheme that
determines the clique structure directly. Since a certain amount of
knowledge in this direction can be obtained from S2, it is conjec-
tured that possibly there is a simple formula relating clique struc-
ture to the numbers in S®. As yet no such formula has been developed.

In a consideration of this problem, it was questioned whether
certain aspects of the structure would be lost in the multiplication,
which, if true, might make the discovery of the desired formula im-
possible. The following theorem shows that neither the clique struc-
ture nor any of the properties of S are lost in the matrix S*: Any
real symmetric matrix has one and only one real symmetric # root
if m is a positive odd integer (§5.12). This theorem is somewhat more
general than was required, since it does not restrict the entries in
the n** root to 0 and 1, and since it is true for any odd root rather
than just the cube root. (In general the real symmetric even roots
are not unique.)

This theorem suggests a further problem to be solved: to find
a symmetric group structure which will insure the presence of cer-
tain prescribed minimum n-chain conditions for odd n . To carry this
out it will probably prove necessary to discover a theorem that uses
not only the realness and symmetry of the § matrix and ifs powers,
but in addition the fact that only the numbers 1 and 0 may be entries
in S.

4. Examples
4.01. As the first example, let us compare and analyze the friend-
ship structure in the two following hypothetical groups. The matrices
are (where a blank entry indicates a zero) :
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I 11

12345678910 12345678910
1~ 1 1 11 1~ 1° 111 17
2 1 11 11 1 2 1 1 ‘!
38 1 1 3 . 1 1
4 11 1 1 4 1 1 1 11 )
5 1 5 1
6 1 6 1 1
7 11 1 1 7 1 1
8 11 1 1 1 8 1 1
9 9 11 1
10,11 11 _ 10 1 1 1 _

The associated S matrices are:

12345678910 12345678910
i 1 1 11 1 1 111 1~
2 1 1 11 1 2 1
3 3 1 1
4111 1 1 4 {1 1 1
5 1 5 1
6 1 6 1 1
7 11 1 1 7 1
811 1 8 1
9 9 1 1
10 11 1 1 10 1 N

The 82 matrices are:
I 11

12345678910 12345678910
1 “54 38 32 2~ 174 11 1 7
2 45 3 32 2 2 1 1
3 3 1 211 11
4 33 4 23 2 4 i 1381 1 1
5 | 1 ; 5 111 1
6 | 1 ! 6 | 2
7 33 2 4 2 3 7 1 1
8 1 22 3 238 2 8 1 1
9 9 1 1 2
10 22 2 32 3 10 _ 111 1 ]

Here the differences between the groups are becoming evident.
In group I, men 3 and 9 have no mutual friends, since 8,5 = 8, = 0
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(§3.02). Thus, as far as symmetric relationships are concerned, these
men are isolated from the group. In the same way we determine that
5 and 6 each have just one symmetric friendship relation (s:;5® = 86
=1, §3.02) which we determine to be 5 <==> 6 from the S matrix.
The remaining elements in S2 form a rather dense set of quite large
numbers, which means, roughly, a tightly knit group.

In the second group, on the other hand, every man has a non-zero
main diagonal in S2. The men 2, 5, 7, 8, and 10 each have a single
mutual friend, which we determine to be: 2 <=2> 6,5 <=> 1,
7<=>6,8<=2>9,and 10 <=2> 1. Then since s::* = 2 and since
we have just cited 6’s two mutual friends, 6 need not be considered
further. We note that the off-diagonal areas of this S* matrix are
not so completely filled as group I, indicating that the group is not
so tightly bound.

The S® matrices indicate the differences in compactness of the
structures quite clearly:

I I

1 234567 89 10 123456678910
171415 14 14 12 12 7] 1"2 564 11 4]
211514 14 14 12 12 2 2
3 315 241 i11l
41 14 14 10 13 8 10 4 |6 421 4 1
5 1 5] 4 11 1
6 1 6 2 2
7 1414 138 10 10 8 7 2
81 12 12 8 10 6 7 8 1 1 2
9 9 1 141 2 1
10 | 1212 10 8 7 6] 104 11 1

Since the corresponding main diagonal terms are non-zero, men 1, 2,
4,7, 8, and 10 of group I are in cliques (§3.03). These, with 3 and 9
which have no symmetries in the group and 5 and 6 which are mutual
friends, account for all members of the group. The terms 85 =
S1010® = 6 suggest a clique of four members; however, the existence
of other main diagonal terms makes it impossible to apply the for-
mula (t—2) (t—1) (8§3.04). Investigating in S first the elements 1,
2, and 4 because their columns have the largest values in the tenth
row, we find that elements 1, 2, 4, and 10 form a clique of four mem-
bers. In the eighth row the largest entries are in columns 1, 2, and
7, and an investigation reveals that 1, 2, 7, and 8 form a clique of
four men, which then overlaps the first clique by the men 1 and 2. In
row four the largest entries are found in columns 1, 2, and 7. We
then find that 1, 2, 4, and 7 form a clique of four elements which
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overlaps the previous two. All the men contained in cliques have been
accounted for at least once, and a check either with the formula for
main diagonal entries (§3.05) or directly in the § matrix indicates
that all the cliques have been discovered. This, coupled with what
we discovered in S? completely determines the symmetric structure
of the first group.

For purposes of qualitative judgment and a guide to carrying
out analysis, we note that the first two rows of S® present an inter-
esting summary of the clique structure. The entries s,,® and s, ®
have the largest values, next largest are in columns four and seven,
and then finally in columns eight and ten. Men 1 and 2 are contained
in all three cliques, 4 and 7 are each contained in two cligues, and
finally men 8 and 10 are each in only one clique. This indicates that
the magnitude of the off-diagonal terms determines to some extent
the amount and structural position of the overlap of cliques.

In group II there are only three elements with non-zero main-
diagonal entries, all with the value 2. This fits the formula ({—2)
(t—1) with ¢ = 8 (83.04). Thus the men 1, 3, and 4 form a clique
of three members. Returning to S%, we see that there remains one
unacecounted symmetry each for men 4 and 9, hence 4 <=2> 9.

In group I, the off-diagonal terms are large in magnitude and
are quite dense in the array, with some rows completely empty or
with single entries in the 8* matrix. This indicates a closely knit
group with certain men definitely excluded. The S? matrix for the
second group has fewer entries of a smaller value indicating a less
tightly knit structure, but it has no empty rows and only one row
with a single entry; that is, it has fewer people than group I who
are not accepted by the group or who do not accept it.

A consideration of the matrix X — S will give all the antimetries
in the groups and complete the analysis of the structures.

It is clear that this procedure gains strength as the complexity
of the problem increases, for the analysis of a twenty-element group
is little more difficult than that of a ten-element group.

4.02. The second example is a communication system compris-
ing two-way links between seven stations such as might occur in a
telephone or telegraph circuit. The number of channels of a given
number of steps (i.e., n-chains in the general theory) between any
two points and the minimum number of steps required to complete
contact between two stations will be determined. Suppose the matrix
of one-step contacts is:



