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1 2 3 4 5 6 7  
_ 

2 
3 
4 
5 
6 
7 1 

which in this case is also the  
are given by X~: 

1 1  1 -  
1 1 
1 1  1 1  

1 1 1 1  
1 1  1 1  

1 1  1 
1 1 1  

S matr ix .  

1 
1 - 3  
2 1 
3 1 
4 2 
5 2 
6 1 
7 0 

and the three-step ones by X3: 

Then two-step connections 

2 3 4 5 6 7  

1 1 2 2 1 0  t 
2 1 1 1 0 1  
1 4 1 1 2 3  
1 1 4 3 2 2 ]  
1 1 3 4 2 2 j  
0 2 2 2 3 2  
1 3 2 2 2 4  

1 2  3 4 5 6  7 
2 4  8 4 4 4  8 
4 2  5 3 3 3  3 
8 5  4 1 0 1 0  5 5 
4 3 1 0  8 9 9 1 1  
4 3 1 0  9 8 9 1 1  
4 3  5 9 9 6  8 
8 3 5 1 1 1 1 8  6 

(2) (:2) 
From the former,  the two connections 1 < ~- > 7 and 2 < ~ > 6 can- 
not be realized because x17 ¢~) ~ x71 ¢2) ~- 0 and x2+ (~> ~ x+~ <2) - -  0 
(§3.01). The contacts a re  possible i n - ~ r e e  steps, however, since~ X 3 
is completely filled. Thus two steps a re  sufficien~ for  most  contacts 
and three  steps fo r  all. 

In  dete~Tnining the  number  of paths between two points it is de- 
sirable to eliminate redundan t  paths: For  two-step communicat ion 
this is done by dele*ing the main  dia~onal of  X ~. The remaining te rms 
represent  the number  of two-step paths between the  stations indi- 
cated. The mat r ix  of redundancies  for  three-step communication is 
given by R ~+~ "-- X R  ~2) ~+ R ( ~ > X  + E ~> - -  S (§3.06), which works out  
to be: 
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1 
2 
3 
4 
5 
6 
7 

1 2 3 4 5 6 7  
2 4 6  6 
4 2 5  
6 5 4 7 7  

7 8 7 6 7  
7 7 8 6 7  

6 6 5 6  
6 7 7 6 6  1 

The matr ix  of non-redundant  three-step communication paths is 
X 3 ~ R ( ~ ) :  

1 
2 
3 
4 
5 
6 
7 

1 2 3 4 5 6 7  

2 4 4 4 2 J  3 3 3 3  
2 3 3 5 5  
4 3 3  2 3 4  
4 3 3 2  3 4  
4 3 5 3 3  2 J  
2 3 5 4 4 2  

We notice that  the three-step 
all redundant  but  that  there 
tions. All other combinations 
ing them. 

paths between I and 2 and 2 and 3 are 
are two-step paths for  these combin~- 
have at least two t~ree-step paths join- 

5. Mathematical Theory 
5.01 To c a r r y  out the following mathematicM formulation and 

the proofs of theorems it is convenient to use some of the symbolism 
and nomenclature of point set theory. As there is some diversity in 
the literature, the symbols used are: 

Sets are either defined by enumeration or by properties of the 
elements of the set in the form: symbol for the set [symbols used for 
elements of the set I defining properties of these elements]. When 
a single element i is treated as a set it  will be denoted by (i), other- 
wise sets will be denoted by upper  case Greek letters. 

The intersection of (elements common to) two sets P and ¢ 
is denoted by F • ¢ .  

The union of two sets F and ¢ (elements contained in either or 
both) is denoted by P + ~ .  The context will make it clear whether 
the symbol i+ refers to addition, mat r ix  addition, or union. 

The inclusion of a set P in another  set ¢ (all elements of P are 
elements of ¢) is denoted by P < ¢ .  The negation is P <* ¢ .  

If  • < 2 ,  then the complement of ¢ with respect to 2 ,  ¢% is de, 
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fined by ¢ + ¢' - -  ~= and • • ¢' ----- 0 where  0 is the null set. 

The inclusion of ~ single element i in a set ¢ is denoted by i ~ ~ .  

For  any  two elements i and ] of a set 2 and a subset ~9 of 2:  

(i) + (j) < ~2 i f  and only if  i s ~2 and j ~ ~ .  
(i) + (]) <* t2 implies i e ;2' and /o r  ] e ~2'. 

The symbol 6i~ = l  i f  i = j  
- - 0  i f  i=#]  

5.02. Consider a finite set 3 of x elements denoted by 1 , 2 ,  . . . ,  
i , . . . ,  ] , - . . ,  x for  which ~here is defined a relationship - -  > between 
elements and its negation ~ > having the properties: 

1. E i the r  i - -  > ] or i ~ > ] for  all i and ] e ~ .  

2. i~=>i .  
Let a number  x~j be associated wi th  i and 3" such tha t  

- - 1  i f  i - - > ]  
----0 i f  i ¢ > ] .  

A matrix X ---- [x~] is formed from the numbers x~s. I t  wilt be found 
useful to denote the i,] entry  of  the nth power of X ,  X ~, by x~/~. 

A symmetry is said to exist between i and ] i f  and  only i f  i ---- > ] 
and ] - -  > i ,  in which case we may wri te  i ' <  = > ] .  For  the mat r ix  
X this--requires tha t  x~s ---- x~ ----- 1.  If, however, e i the r_ / /=  > ] and 
] ¢= > i or i ¢ > ] and ] = > i then an antimetry is said to exist be- 
tween i and ] .  

The symmetric matrix S associated with  the ma t r ix  X is defined 
by S ---- [s,¢] , where 

- - 1  i f  x ~ j = x j i = l ,  i.e., i < : > ] .  
s~j ----- sj, ~__ 0 otherwise. 

The i,] en t ry  of the n *h power of S is s~/~. 
5.03. Definitions: 

1. An ordered sequence w~th n + l  members, i -- ;~,  ?~, --- ,  7 , ,  
?**~ ----- ] ,  is an n-chain P f rom i to ] i f  and only if  

i =  ~ ' - -  > ~'~, ?~--  > ~s, " " ,  ? ~ =  > ~',*÷l'~ ] • 

(n) 
In brief, i - -  > j indicates t ha t  there exists an  n-chain f rom i to ] ,  
which may-EIso be enumerated as i -- 71, ?,2, --- , ~'~, ~'~,÷~ =- ] ,  or, 
when no ambigui ty  will arise, as i ,  k ,  l ,  . . . ,  p ,  q ,  ] with the order- 
ing being indicated by the wr i t ten  order of the sequence. 
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2. Two n - c h a i n s  F and • a r e  equa l  i f  and only i f  the r ta mem- 
ber of F equals the r th member of ~ ,  i.e., 7~ - -  ¢~, for  1 < r < n + 1.  

I f  this is not true, t h e n / "  and • are d i s t i n c t .  

3. Each pair  of elements 7~ and 7~ of an  n-chain with 1 < k < 
m < n + 1 and 7~ : 7.~ is said to be the r e d u n d a n t  p a i r  ( k , m ) .  A n  
n-chain is r e d u n d a n t  i f  and only i f  it  contains a t  least one redundant  
pair. 

4. The elements 1 , 2 ,  - . . ,  t (t  > 3) form a c l ique  0 o f  t mem- 
bers i f  and only i f  each element of O is symmetr ic  wi th  each other ele- 
ment  of 0 ,  and .there is no element not in O symmetr ic  wi th  all ele- 
ments  of O.  

This is equivalent .to 

x i j =  1 - -  &j f o r / ,  ] =  1 , 2 ,  . - . ,  t but not f o r i ,  ] =  1 , 2 , . - . ,  t ,  
t + 1 ,  whatever  the (t + 1) ~ element. 

5.04. Theorem 1: x ~  (') = c i f  and only if  there exist c, distinct 
n-chains f rom i to ] .  
Proof:  By definition of mat r ix  multiplication 

X~j (n) ~:  ~ • . .  ~ Xi~X~ . .  • XmXcj,  

with the summations over n--1 indices. Suppose tha t  the  indices have 
been selected such tha t  i ,  k ,  i ,  . . . ,  p ,  q ,  3" is an n-chain f rom i to ] .  

Then by definition 1 (§5.03) 

~ i k  ~ Xkl = ' ' "  ~ Xpq- - -  Xqi = 1 , 

and if the indices were not so selected then a t  least one x~, ~-- 0 .  Thus 
n-chains contribute 1 to the sum and other ordered sequences con- 
t r ibute  0 .  Since the indices take on each possible combination of 
values jus t  once; every dist inct  n-chain is represented jus t  once. If 
there are c such n-chains, then there  a re  a total of c ones in the sum- 
mation. 

5.05. Theorem 2: An element of ~ has a main  diagonal value 
of c in X ~ i f  and only i f  it  is symmetr ic  ~' i th c elements of 2 .  
Proof:  Let  ~ be the set of ]'s for  which i <  ~- > ]. By definition 

x .  (~) = E x~jxj~ + E x ~ x j ~  = ~ ~+ ~,~. 
j e ~  j e ¢ "  

~]~ "-  c by theorem 1 (§5.04) and N~ - -  0 because i and ] are not sym- 
metric for  ] s ~', so ei ther  x~j = 0 or xj~ ~--- 0 or both. Thus i f  i is sym- 
metric with c elements of 2 ,  x~j (~) : c .  
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I f  xi~ (2) ~ _ c ,  then by  theorem I there  exist  c dist inct  j ' s  such tha t  
x~j----xs~ ~-__1, i.e., i < ---->__] fo r  c ] ' s .  

5.06. Theorem 3: An element i is contained in a clique if  and 
only if  the  i t~ en t ry  of the  main  diagonal of S ~ is positive. 
Proof :  Suppose tha t  i is contained in a clique O .  
By definition 

(/)+(k)<~ 

S e l e c t ]  and k s u c h t h a t  (]) :+ (k) < O and such t h a t i # ] #  k 
# i .  Such elements exist  b y  the  definition of a clique (definition 4, 
§5.03). I t  is t rue  by  the  definition o f  a clique and of  the  ma t r ix  S 
that: s~s ---- sj~ = s¢~ - -  s~j : s~ = s~ - -  1 for  such ] and k .  Thus this 
choice of ] and k contr ibutes  2 to--~e summation,  and because s~j > 0 
for  all i and ] there  are  no negat ive contr ibutions to the sum;  there- 
fore s~ (~) > 2 > 0 .  

Suppose tha t  s~ (8) > 0 .  Then there  exists at  least  one pa i r  of 
elements of ] and k such tha t  s~i = sj~ ---- sk~ ~--- 1 and this implies 
i < = >  3",3' < - - >  k ,  and k < = >  i .  I f  there  are  no other  ele- 
ments symmetr ic  wi th  i ,  ] ,  and k then these th ree  fo rm a clique. I f  
there  is another  element symmetr ic  wi th  these three, then consider 
the set  of four  fo rmed b y  adding i t  to the previous three. I f  there  ~s 
no other  element symmetr ic  with these four,  they fo rm a clique. I f  
there is, add it to the  set and continue the  process. Since the set  2 
contains only a finite number  of elements, the process must  terminate  
giving a clique containing i .  

5.07. Theorem 4: I f  1) O~ are  cliques of  t~ members,  2) the sets 

zl~ ~--- O~ • (e~ :+ 0~ + -.. + O~_~) have d~ members ,  and 3) i is con- 

tained in the cliques @~, z - -  1 , 2 ,  -- . ,  m ,  then 

s,,(~) = ~ ( (t~ - -  2) (t~ - -  I )  - -  (d~ - -  2)  (d~ - -  I )  } :+ 2 .  

Proof :  By definition 

- -  ( i ) + ( k ) < Y ~  

The set of all the pairs ] ,  k is the union of the following three  mu- 
tually exclusive sets: 

T~ [ ] ,  } I there  exists  v such tha t  (])  + (k) < 0 , ;  there  does not  
exist ,a such tha t  (]) :+ (k) < 0~ ,  (])  + (k) <" A~] 
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N~ [ j ,  k I there does not exist a such tha t  (j) + (k) < O,] 

T~ [ j ,  k i there exists a such tha t  (j) + (k) < 0~,  (j) + (k) <* A~] . 

1. For  T1 then ei ther  

a) (j) + (k) <* O~ for  all a .  This is not possible because 
(]) + (k) < or;  

b) (j) + (k) < A~ f o r  all a .  This is not possible because 
A I = 0 ;  

o r e )  (j) + (k) < O~ if and only if  (j) + (k) < A ~ f o r a l l a .  
This is not possible because A~ = 0 .  Thus gJ~ is empty. 

2. (j) + (k) < T2 impties'suss.~s~ = 0 for  SuSjkSkl ~-- 1 im- 
plies tha t  i ;  ] ,  and k are either a clique or a subset of a clique (by 
the  a rgument  of theorem 3), but (j)  + (k) < gz implies ] and k 
are not contained in any clique. 

3. T~ gives tha t  

( j)+ (k) <q,~ 

= Z Z Z s~jsi~s~ . 
V=l (j)+(k)<@ v 

(j)+ (k)<*A v 

We observe tha t  : £2~[j,k 1 (j) + (/~) < O,] = D 2 [ j , k  I ( ] ) +  (k) < 
o.~, (y) + (k) < A,] + Q~[S,k i (]) + (k) < O,, (y) + (k) <* Av] 
and since .% - £2~ = 0, it follows tha t  Y~ = Y~ + N or Y~ = N --  ~ .  

~h Ft2 fl~ ~3 f~l fte 

t?, is the set of all ordered pairs (j)  + (k) < O,,. I f i C j C k ¢ i ,  
then s~ = s~k = s~ = 1 ,  othetavise one of the s~ - -  0 .  Since every 
O, contains t,, elements,  there are %-aP~ ordered pairs sa t isfying these 

conditions. Thus: 

Similarly 

z={o (d'- 2) I) ' o .  11 
C o m b i n i n g  t h e s e ,  

since AI--O. 

~a 
[ (tv - -  2 )  (tv - - 1 )  - -  ( d v - - 2 ) ( d ~ - - l ) , ~ > l  

(iv - -  2)  ( t ,  - -  1) , v - -  1 .  
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S u m m i n g  ove r  ~, gives  

s.~ (~) = ~ ( ( t ,  - -  2) (t~ - -  1) - -  (d~ - -  2) ( & , -  1) } 
Y = 2  

+ (t l  - -  2) ( t l  - -  1) 

~- ~ ( (t~ - -  2) (t~, - -  1) - -  (d~ - -  2) (d, - -  I )  } + 2. 
V=l 

Since the entries szj (3) are uniquely determined from the entries 
of S by the laws of matrix multiplication, all valid methods of cal- 
culating s~ (a) will give the same result. Specifically, in the above 
formula the numbering of the cliques is immaterial. 

Similar formulas to that just deduced may be given for the off- 
diagonal terms of S 3, but they are considerably more complex, and, 
to date, they have not been found useful in applications. 

5.08. T h e o r e m  5: I f  1) 0 is a set  of  t m e m b e r s  w i t h  t > 3 ,  
2) s~/~) ~ ( t - -2 )  ( t - - l )  f o r  i con ta ined  in O ,  and  3) sj/~) = 0 f o r  ] 
con ta ined  in O', t h e n  O is a clique of  t m e m b e r s .  
P r o o f :  T h e r e  a re  two  cases:  

1. i < = > 2" f o r  all i ,  2" s O ,  t h en  0 is a clique by  def in i t ion 4 
(§5.03) and t h e o r e m  3 (§5.06) ,  and i t  ,has t m e m b e r s  b y  p a r t  1 of  

the  hypothes i s .  

2. T h e r e  exis t  p and  q s O such t h a t  p and  q a r e  no t  sy mme t r i c .  
T h e n  b y  def in i t ion 

S~/~) = Z Z s~jsjks~ 
U)+(~)<o 

+ Z E s~jsj~sk~. 
(j)+(k)<*O 

I f  s~jsj~sk{ ~- 1 ,  the  e l emen t s  i ,  2", and  k a r e  a clique o r  a subse t  of  
a etique and  thus  by  hypo thes i s  (3) and  t h e o r e m  3 (§5.06) t h e y  a r e  
all con ta ined  in O;  t h e r e f o r e  t he  second sum ---~ 0 .  I n t r o d u c e  in 2 
sufficient r e l a t i onsh ips  p = > q to m a k e  0 a elique { of  t me mb e r s .  
Sinee s{~ > 0 f o r  all i and  2", t he  i n t r o d u c t i o n  of  these  spq - -  1 m u s t  
i nc rease  the  sum by  2 o r  more ,  f o r  a t  l eas t  two  add i t iona l  3-chains  
a r e  i n t ro du ced  (i,p,q,i and  i ,q,p,i) ; hence  b y  t h e o r e m  4 (§5.07) 

S u  (~) - -  Y. Y~ si~sj~s~i - -  2 = ( t - - 2 )  ( t - - l )  - -  2 
(j)+(k)<~ 

< ( t - -2 )  ( t - - l ) ,  



112 PSYCH0~ETRIKA 

which is contrary to hypothesis (2). Therefore 0 is a clique of t 
members. 

5.09. Redundancies: 

By definition 3 (§5.03) an n-chain is redundant if and only if it 
contains at  least one redundant pair (k,m), where a redundant pair 
defines two members of the n-chain ?k and ?~ with ?~ --  ~,~ and k < m .  
I f  these ordered subscript pairs (k,m) and the end point pair  (i,]) 
(the latter not necessarily a redundant pair) are considered as sets, 
then five classes of mutually exclusive redundant n-chains may be de- 
fined which include all redundant n-chains: 

1. The A~ class: There exists at least one redundant pair (k,~)  
and it has the property: 

( k , m )  • ( i ,])  = o .  

2. The B, class: There exists one and only one redundant  pair 
(k,m) and it has the property: 

( k , m )  • ( i ,])  = i .  

3. The C~ class: There exists one and only one redundant pair 
(k,m) and it has the property: 

( k , m )  • ( i ,])  = ] .  

4. The D,~ class: There exist two and only two redundant pairs 
(k,m) and (p,q) and they have the properties: 

( k , m )  • ( i , D  = i 

(p ,q )  • ( i ,])  = ] .  

5. The E, class: There exists one and only one redundant pair 
(k,m) and it has the property: 

( k , m )  • ( i , j )  = ( i , i ) .  

If there are t n-chains i ~ ' >  ] of the class A,  from i to ] ,  then 
define a~s(") - -  t .  From these numbers the matr ix A(") = [a~/~)] is 
formed. Th-i~ is the matr ix of redundant n-chains--~ the class A , .  
If  R (') is the matrix of redundant n-chains it follows, if analogous 
definitions are made for matrices of the other four classes, that  

R ( ' )  - " A  ('° + B ('*) '+ C ('~) + D ( ' )  + E ¢'° . 

It  follows directly from the definitions and the limitations on n 
that  
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R ( z )  r - -  0 

A (8) - -  0 .  

I t  will now be proved t h a t  D (3) = S .  By the  definition of the  
class D 3 ,  there  exist  two and only two redundan t  pai rs  ( l¢ ,m)  and 
( p , q ) ,  and they  h a v e  the proper t ies :  

( k , m )  • ( i , D  = i 

( p , q )  ( i , ] )  - "  ] .  

These pairs  may  define in total  ei ther  three  or four  members  of the 
3-chain ( three  members  when m ~- p ,  but  no fewer  fo r  i f / c  - -  p and 
m = q then ( k , m )  • ( i , ] )  = ( i , ] ) ,  which is con t r a ry  to the  definition 
of D:~). Suppose m = p ,  then ei ther  i ---- y~ - -  ] or  i = y~ = ] ,  which 
is impossible fo r  i ¢ > i by assumption. Thus m ¢ p .  Wi th  fou r  
members  the re  a re  two possibilities fo r  a r edundan t  3-chain= e i the r  
i ----- ?~, 7~ - -  ] or  i ----- ~,~, ~,~ -~ ] .  The f o r m e r  is impossible by the  
previous a rgumen t ;  thus the only 3-chains o f  the  class D~ are  of  the  
form 

i , r ~ , ) , ~ , ] - - i , ] , i , ] ;  

tha t  is, 
- - 1  if  i < = > ]  

d~/8) : 0 otherwise, 

Therefore ,  by the definition of S ,  we have D (3) = S .  
I f  the  matr ices  of redundancies up to  and including R (~-2) are  

known, then we can find A (~') by A (~) ----- X R ( ' ~ 2 ) X .  

Proof :  By the  definition of  the class A,~, a r edundan t  n-chain of  this 
class has the fo rm  

(a) (b) (c) 

~ = y l  , y~ , ~ ,  y~ , - - ,  y,~ , - - ,  7~ , ~'~,÷l -= , 

w h e r e a + b + c + 5 = n , k < m , a n d y k = y , ~ .  

(~t-2) 
I t  follows f rom the definition tha t  p - -  72 > ~ ----- q is a redundan t  
n--2 chain, and each such dist inct  n--2 chain determines no more than  
one dist inct  r edundan t  n-chain f rom i to ] .  Thus  the number  of re- 
dundant  n-chains of type A~ f rom i to ] is the  sum over  all combina- 
tions p -  ~2 and q -- y~ fo r  the number  of r edundan t  n : -2  chains f rom 
p to q,  t ha t  is, 

(p)+(q)<,~ 

o r  

A (~) = X R ( ~ ' 2 ) X .  
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I f  the mat r ix  [e~/*)] is defined as 

[e , / - ) ]  = X R ( , ~ ) X  + D oo 

then the relations 

A ('~) + B (~) ~+ D(~) = R ¢ ~ )  X 

A (~) + C TM) + D('O = X R ( ~ x )  
E TM) = [~j  (x~fcr - -  e#.~ ) ] 

follow through an enumerat ion of  cases and by  using similar  pa t te rns  
of  p roof  to tha t  j u s t  given. 

These various relations permit  the  specific conclusions: 

R(2) = [&ixi/~)] = E(2) 
R (3) = X R  (2) + R ( 2 ) X  + E (3) ~ S 

and the general result  

R(~)  = X R ( ~ )  + R ( ~ - I ) X  _ X R O ~ 2 ) X  

+ EOO - -  D(~) . 

This la t ter  expression is not  useful  in its present  form because D (") 
has not  been expressed in te rms  of the  matr ices  of  redundancies up 
to and including R (--t). This problem of the  determinat ion of  the 
mat r ix  of  redundant  n-chains is lef t  as an unsolved problem of both 
theoretical  and practical interest .  

5.10. Uniqueness:  

In certain applications it is desirable to know whether  a power  
of a ma t r ix  uniquely determines the matrix.  This is not  t rue  in gen- 
eral, fo r  Sylvester 's  theorem gives a multiplici ty of  n t~ roots of  a 
matrix.  The matr ices  being considered are ra the r  specialized, how- 
ever, and it is possible tha t  some degree of uniqueness may  exist. 

The following two theorems indicate cer tain sufficient conditions 
for  uniqueness. Since these theorems do not  utilize completely the 
special characteris t ics  of  the matr ices  in this study, i t  is probable 
tha t  more  appropr ia te  theorems can be  proved. 

5.11. Theorem 6: I f  p and q a re  posit ive integers, i f  two inte- 
gers  a and b can be  found such tha t  a p  ~ b q  - -  1 ,  and if  X is a non- 
s ingular  matr ix,  then the  powers  Xp and X~ uniquely determine X .  
Proof :  Suppose tha t  there  exist  two  non-singular matr ices  X and Y 
such tha t  X~ = YP and Xq = Yq. Then X ~ = Y~ and X ~q = Y~q. Now, 
fo rm X b q Y  = y b q y  = y~q÷~ - -  y~p,  since ap - -  b q  = 1.  Similarly 
X ~ X  = X bq÷~ = X ap. But  since X ~p - -  Y~ it  follows tha t  X ~ q X  - -  X b q Y .  
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Since X is non-singular,  IX~I ¢ 0 ,  and thus  there exists a unique in- 
verse of X %  X -~q, such tha t  X ~ X  bq = I ;  therefore X = Y .  

5.12. Theorem 7: I f  n is a positive odd integer and S a real 
symmetric matnix, then there is one and only one real symmetric  n ~I' 
root of S .  

Proof:  1. There is one such n t~ root. 

Since S is real and s~m~netric there exists a real orthogonat 
matr ix  P such tha t  P ' S P  = D ( P '  is the transpose of P)  is diagonal 
with real entries d~ which are the characterist ic roots of S .* Assume 
P is so chosen tha t  dl~ ~< d~ < .-. < d ~ .  Let  B be the diagonal ma- 
trix of the real n tj' roots of the elements of D ,  i.e., b~ - -  real ( d ~ )  ~/" , 

so 
B ~ = D .  (1) 

Define R = P B P ' .  Then R " = S ,  for  

R ~ = ( P B P ' )  ~ ~-- P B ~ P  ' = P D P '  =- S .  

Since B ~s real and diagonal and P is real and orthogonal, R is real 
and symmetric.  

2. There is only one such n th root. 

Suppose there exists a real symmetr ic  matr ix /71  not  equal to R 
such tha t  R~" = S .  Then there exists an orthogonal mat r ix  Q such 
that  Q ' R ~ Q  -~  T is diagonal in the characterist ic roots of R1, and or- 
dered as before. Consider the n th power of T: 

t n - -  ! T ' ~ : ( Q R ~ Q )  - - Q R ~ Q ~ - Q ' S Q  

: Q ' P D P ' Q  = (P 'Q) 'D(P 'Q)  
T ~ -~- U ' D U ' 7 -  (2) 

where U is the orthogonal mat r ix  P ' Q .  Since U' = U -~, T" and D are 
similar, and hence have the same characterist ic roots . t  Because they 
are diagonal in the characterist ic roots, ordered in the same way, 
they are equal: 

D - -  T . .  (3) 
Subst i tut ing (3) in (2) 

or  

D - -  U ' D U  

U D  " -  D U .  

*MacDuffee, C. C. Vectors and matrices. Ithaca, N. Y.: The Mathematical 
Association of America, 1943, pp. 16~-170. 

tIbid., p. 113. 
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By definition of mati ix multiplication this means 

u~jd~k = Y~ d . u j ~ .  
J J 

Since D is diagonal, this reduces to 

o r  

u~k (d,k - -  d . )  = 0 .  

Since the dkj: are real and n is odd, equation (4) implies 

u ~ [  (G~)  v~ - -  ( d . )  ""] = 0 

where the (Ga)~/= are real. Thus by the definition of B ,  

U B  -~-- B U  

o r  

By (1) and (3) 

( 4 )  

B = u ' B u .  (5) 

T ~ : D : B  ,~ , 

but by construction T and B a r e  both real diagonal matrices and n 
is odd, so this implies 

T = B .  

This substituted in (5) gives 

T - -  U ' B U - -  Q ' P B P ' Q  

o r  

Q T Q '  ~ -  P B P ' .  

But Q T Q '  ---- R1 and P B P '  = R by definition ; therefore 

R I  ~ R . 
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