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which in this case is also the § matrix. Then two-step connections
are given by X2:
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and the three-step ones by X*:
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From the former, the two connections 1 <=2> T and 2 <= > 6 can-
not be realized because x,;? = 2, = 0 and ;@ = X® = 0
(§3.01). The contacts are possible in three steps, however, since X?
is completely filled. Thus two steps are sufficient for most contacts
and three steps for all. '

In determining the number of paths between two points it is de-
sirable to eliminate redundant paths. For two-step communication
this is done by deleting the main diagonal of X2 The remaining terms
represent the number of two-step paths between the stations indi-
cated. The matrix of redundancies for three-step communication is
given by R® = XR® 4+ R@X + E® — § (§3.06), which works out
to be:
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1234567
17246 6 ]
2425
3165477
4 78761
5 77867
6 6656
716 7766 ]

The matrix of non-redundant three-step communication paths is
X — R®;

1234567
17 244427
2 33338
312 8355
414383 234
514832 34
643533 2
712385442 |

We notice that the three-step paths between 1 and 2 and 2 and 3 are
all redundant but that there are two-step paths for these combina-
tions. All other combinations have at least two three-step paths join-
ing them.

5. Mathematical Theory

5.01 To carry out the following mathematical formulation and
the proofs of theorems it is convenient to use some of the symbolism
and nomenclature of point set theory. As there is some diversity in
the literature, the symbols used are:

Sets are either defined by enumeration or by properties of the
elements of the set in the form: symbol for the set [symbols used for
elements of the set | defining properties of these elements]. When
a single element ¢ is treated as a set it will be denoted by (%), other-
wise sets will be denoted by upper case Greek letters.

The intersection of (elements common to)} two sets I’ and &
is denoted by I' - &.

The union of two sets I' and & (elements contained in either or
both) is denoted by I' + ®. The context will make it clear whether
the symbol -+ refers to addition, matrix addition, or union.

The inclusion of a set I" in another set @ (all elements of I' are
elements of @) is denoted by I' < &. The negation is I" <* &.

If ® < Z, then the complement of & with respect to £, @', is de-
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fined by & + & = & and & - @' = 0 where 0 is the null sef.
The inclusion of a single element { in a set & is denoted by i e @.
For any two elements 7 and j of a set £ and a subset 2 of Z:

(B + () <QifandonlyifiesQandje Q.
(@) + (5) <* Q2 implies i ¢ Q and/orj ¢ 2'.
The symbol §;; =1 if i=7j
=0 if i#7
5.02. Consider a finite set = of « elements denoted by 1,2, -+,

i,+e+, 7, , x for which there is defined a relationship = > between
elements and its negation ¢ > having the properties:

1. Either¢i=>jori# >jforalliandjeZ.

2. 1F>1.

Let a number 2;; be associated with ¢ and j such that
=1 if i=>j
=0 if 1#>7.

A matrix X = [;;] is formed from the numbers x;; . It will be found
useful to denote the 4,7 entry of the n* power of X, X», by x;;™.

A symmetry is said to exist between i and 7 if and only if i =>j
and j = > 1, in which case we may write i'< = > j. For the matrix
X this requires that z;; = z; = 1. If, however, either ¢ => j and
j¥%= > ioris > jand § = > ¢ then an antimetry is said to exist be-
tween ¢ and 7 .

The symmetric matriz S associated with the matrix X is defined
by S = [si;] , where

S"‘—S":l if x,;j::xﬁ:"—l, i.e., i<m>].
U0 =0 otherwise.
The %,7 entry of the n'* power of S is s;;¢™.
5.03. Definitions:

1. An ordered sequence with n+1 members, i = yi; y2, ++ 5 7as
yua = 7, is an n-chain I' from 7 to j if and only if

Lij

1= 71i> V2 ,?2'i> Vs y’”:?n:i?nﬂg.?‘_-
(n)
In brief, i = > 4 indicates that there exists an n-chain from < to 7,
which may also be enumerated as ¢ = yi, y2, ==, Pn, Vaur = i, or,
when no ambiguity will arise, as ¢, k,1,---, p, ¢, 7 with the order-
ing being indicated by the written order of the sequence.
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2. Two n-chains I' and & are equal if and only if the 7** mem-
ber of I" equals the 7* member of @, ie., y,=¢,,for 1 <r <mn+ 1.

If this is not true, then I' and @ are distinct.

3. Each pair of elements y; and y,, of an n-chain with 1 < k& <
m < n + 1and y = y, is said to be the redundant pair (km). An
n-chain is redundant if and only if it contains at least one redundant
pair.

4. The elements 1,2,-.-,¢ (¢ > 38) form a cligue O of £ mem-
bers if and only if each element of @ is symmetric with each other ele-
ment of O, and there is no element not in © symmetric with all ele-
ments of .

This is equivalent to

2 =1—dyfori,j=1,2,.--,tbutnot for¢,j=1,2,---,¢,
t + 1, whatever the (¢ + 1) element.

5.04. Theorem 1: x;;™ == ¢ if and only if there exist ¢ distinct
n-chains fromito g .
Proof: By definition of matrix multiplication
L35 =3 o B Tinllng - o Lpg®gy 5
keE gekE
with the summations over n—1 indices. Suppose that the indices have
been selected such thati,%,{,---, D, ¢, j is an n-chain from < to j.

Then by definition 1 (§5.03)
Lige T Lpgg T 00+ 5 Lpg T Lgj = 1 ,

and if the indices were not so selected then at least one z,, = 0. Thus
7n~chains contribute 1 to the sum and other ordered sequences con-
tribute 0. Since the indices take on each possible combination of
values just once; every distinct n-chain is represented just once. If
there are ¢ such n-chains, then there are a total of ¢ ones in the sum-
mation.

5.05. Theorem 2: An element of £ has a main diagonal value
of ¢ in X? if and only if it is symmetric with ¢ elements of &,
Proof: Let ® be the set of §’s for which ¢« <=7> j. By definition

P = 3 Xy + B Ti%i == Bt D
je® jed’

.= ¢ by theorem 1 (§5.04) and 3, = 0 because 7 and j are not sym-
metric for 7 ¢ &', so either x;; = 0 or «;; = 0 or both. Thus if ¢ is sym-
metric with ¢ elements of Z, 24,2 —¢.
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If 2 = ¢, then by theorem 1 there exist ¢ distinct j°s such that
i =x;=1,le,i<=2>jforcj’s.

5.06. Theorem 3: An element 7 is contained in a clique if and
only if the i** entry of the main diagonal of S3 is positive.
Proof: Suppose that ¢ is contained in a clique 6.
By definition

8= X T 8i;85ki.
(r+(k)<E

Select § and % such that (§) + (k) < © and such that i = 7 #* &k
% 4. Such elements exist by the definition of a clique (definition 4,
§5.03). It is true by the definition of a clique and of the matrix S
that: 8;; = $;5 = 85 = Sk; == 8ix = Sx; == 1 for such j and k. Thus this
choice of 7 and % contribufes 2 to the summation, and because s;; > 0
for all ¢ and j there are no negative contributions to the sum; there-
fore 8:® >2>0.

Suppose that 8;; > 0. Then there exists at least one pair of
elements of 7 and k such that s;; = s = s = 1 and this implies
1 <=>74,7<=>Fk,and k¥ <=> ¢. If there are no other ele-
ments symmetric with ¢, 7, and % then these three form a clique. If
there is another element symmetric with these three, then consider
the set of four formed by adding it to the previous three. If there is
no other element symmetric with these four, they form a cligue. If
there is, add it to the set and continue the process. Since the set £
contains only a finite number of elements, the process must terminate
giving a clique containing 7.

5.07. Theorem 4: If 1) 6, are cliques of {; members, 2) the sets
Ay=0,- (O + 6, + -« 4+ 0,,) have d, members, and 3) ¢ is con-

tained in the cliqgues O¢,0=1,2,---, m, then

5@ =3 {(te—2) (ts—1) — (do—2) (do— 1)} + 2.
]
Proof: By definition

8= 3 2 8§87k
— ()+t<E

The set of all the pairs 7, % is the union of the following three mu-
tually exclusive sets:

Y. [7, % | there exists » such that (j) + (k) < ©,; there does not
exist « such that (7) + (&) < 0., (§) + (k) <* 4]
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¥, [7, k| there does not exist o such that (7) + (k) < 6]
¥ [7, k| there exists a such that () + (k) < 0., (7)) + (k) <* 4] .

1. For ¥, then either

a} {j) + (k) <* 6, for all a. This is not possible because
() + (k) <06

b)Y {(j) + (k) < 4¢ for all «. This is not possible because
4, = 0;

orc) (7)) + (k) < 6.1if and only if (§) + (k) < 4, for all a.
This is not possible because 4, = 0. Thus ¥, is empty.

2. (N + (k) < ¥, implies‘s.ws,-kski = 0 for $;;SpSw = 1 im-
plies that 7, 7, and & are either a clique or a subset of a clique (by
the argument of thecrem 8), but (j) + (k) < ¥, implies 7 and &
are not contained in any clique.

3. W, gives that

S = 3 848kSki
(F1+(R)< ¥y

=2 22 88k
v=1 | (/I+{k;<0
v
(Iy+(R)<*A 4

We observe that: .[7, k| () + (k) <01 =2[7,k| (G) + (k) <
0y, (5) + (k) < AT+ Ql5, k] (7)) + (k) <Oy, (4) + (k) <* 4]
and since 2, - 2, = 0, it follows that 3 =3 + T or I =3 — 3.

o2 Q2 o2 Q3 Q4 Qo
£, is the set of all ordered pairs (j) + (k) < O,. Ifi¥*jFk*1,
then s;; = 83 = sy = 1, otherwise one of the s,, = 0. Since every
6, contains £, elements’, there are gV_1P2 ordered pairs satisfying these
conditions. Thus:

E:tu-'lPe”t: (tv_z) (tv—‘l) .
Q
Similarly

2:

o2

(dv—2)(dv—1), »>1
0 y=1 since 4,=0.

Combining these,

=2y —-1)— (dv--2)(d—1),»>1
2= (t,—2) (o —1) =1,

Q23
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Summing over » gives

5u® =3 ((t—2) (b—1) — (dv—2) (dv— 1))

V=2

+ (&—2) (L —1)

=3I{t—2)¢—1) — (b —2)(dr— 1)} + 2.
Ve,

Since the entries s;;¥ are uniquely determined from the entries
of S by the laws of matrix multiplication, all valid methods of cal-
culating s;;,®® will give the same result. Specifically, in the above
formula the numbering of the cliques is immaterial.

Similar formulas to that just deduced may be given for the off-
diagonal terms of S%, but they are considerably more complex, and,
to date, they have not been found useful in applications.

5.08. Theorem 5: If 1) O is a set of ¢ members with £ > 3,
2) 8:® = (t—2) ({—1) for ¢ contained in @, and 8) $;;® = 0 for j
contained in @', then @ is a clique of ¢ members.
Proof: There are two cases:

1. i<=>jforalli, e ®,then @ is a clique by definition 4
(85.08) and theorem 8 (85.06), and it has ¢ members by part 1 of
the hypothesis.

2. There exist p and g ¢ ® such that p and ¢ are not symmetric.
Then by definition

Su®= T 3T 888k

i+ (k)<

+ 22 S8k
(7)+ (k) <*®
If 51848 — 1, the elements 7, 7, and & are a clique or a subset of
a clique and thus by hypothesis (3) and theorem 3 (§5.06) they are
all contained in ©; therefore the second sum == 0. Introduce in %
sufficient relationships p = > ¢ to make @ a clique & of { members.
Sinece s;; > 0 for all 4 and 7, the introduction of these s,, = 1 must
increase the sum by 2 or more, for at least two additional 3-chains
are introduced (4,9,¢.4 and 1,9,p,7) ; hence by theorem 4 (§5.07)

Si®= 3 T sy8a% — 2= (t—2) (t+—1) —2

(7)+(k)<®

< (i=2) (1),
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which is contrary to hypothesis (2). Therefore ® is a clique of ¢
members.

5.09. Redundancies:

By definition 8 (§5.03) an n-chain is redundant if and only if it
contains at least one redundant pair (k,m), where a redundant pair
defines two members of the n-chain y; and y, with yr =y and k < m.
If these ordered subscript pairs (k,m) and the end point pair (i,7)
(the latter not necessarily a redundant pair) are considered as sets,
then five classes of mutually exclusive redundant n-chains may be de-
fined which include all redundant n-chains:

1. The 4, class: There exists at least one redundant pair (km)
and it has the property:

(k,m) - (3,§) =0.
2. The B, class: There exists one and only one redundant pair
(kym) and it has the property:
(km) - (1) =1.
3. The C, class: There exists one and only one redundant pair
(ksm) and it has the property:
(k,?’)’L) * (?:,j) :.7 .
4. The D, class: There exist two and only two redundant pairs
(km) and (p,g) and they have the properties:

(p,q) - (4,9) =7 .
5. The E, class: There exists one and only one redundant pair
{k;m) and it has the property:

(km) - (4,5) = (i,9).

If there are ¢ n-chains 7 :(n)> 7 of the class A4, from 1 to 7, then
define ;¥ = t. From these numbers the matrix A®™ = [a;;™] is
formed. This is the matrix of redundant n-chains of the class 4..
If R™ ig the matrix of redundant n-chaing it follows, if analogous
definitions are made for matrices of the other four classes, that

R = A .} B» L Q=) - D+ pm

It follows directly from the definitions and the limitations on =z
that
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R® =0
R® = [§;4,,2] =E®
A® =0,

It will now be proved that D® = §. By the definition of the
class D;, there exist two and only two redundant pairs (km) and
(2,9}, and they have the properties:

(kym) - (i,5) =1

(p’Q) * (7';.7) :.7 .
These pairs may define in total either three or four members of the
3-chain (three members when m = p , but no fewer for if ¥ = p and
m = q then (km) - (i,7) = (4,7), which is contrary to the definition
of D;). Suppose m = p, then either 1 = y, = j or ¢ == y; == j, which
is impossible for ¢ % > ¢ by assumption. Thus m # p. With four
members there are two possibilities for a redundant 3-chain: either
1== 9, 9 = 4§ OF ¢ == y3, o — j. The former is impossible by the
previous argument; thus the only 3-chains of the class D, are of the
form

i,Y2,?s,jE’5,J',i,f;

that is,
=1 if i<=>7
=0 otherwise.

Therefore, by the definition of S, we have D® = § .,

If the matrices of redundancies up to and including E™? are
known, then we can find A™ by A® = XR®*2X |
Proof: By the definition of the class 4, , a redundant n-chain of this
class has the form

di;®

@) 18] (¢}
ﬁz'}’l:?ﬁ: s VK s s Vm s ’?’nr}'nﬂ:jy

wherea +b+c¢c+5=n,k<m,and yx = yn-

It follows from the definition that p = y, 2 v, = ¢ is a redundant

7n—2 chain, and each such distinet #—2 chain determines no more than
one distinet redundant n-chain from ¢ to 7. Thus the number of re-
dundant n-chains of type A, from i to 7 is the sum over all combina-
tions p = y, and ¢ = y, for the number of redundant n—2 chains from

p to g, that is,
;M= 33 Bigheg Py
(M+{g)<E
oY
A = XRnX
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If the matrix [¢;;%] is defined as
[eij(")] f— XR(n-—:z)X 4 D(n)
then the relations

A® 4 B . Diny — Rn-1) X
A® + O™ 4 D = XRmD
E® = [§;; (2:; — e;;M) ]

follow through an enumeration of cases and by using similar patterns
of proof to that just given.

These various relations permit the specific conclusions:

R® = [§,;2,,®] =E®
R®=XR® + R®X + E® —§

and the general result

R™ =XRtD + R=DX — XR»X
+ B — Dy

This latter expression is not useful in its present form because D™
has not been expressed in terms of the matrices of redundancies up
to and including R™%, This problem of the determination of the
matrix of redundant n-chains is left as an unsolved problem of both
theoretical and practical interest.

5.10. Uniqueness:

In certain applications it is desirable to know whether a power
of a matrix uniquely determines the matrix. This is not true in gen-
eral, for Sylvester’s theorem gives a multiplicity of #** roots of a
matrix. The matrices being considered are rather specialized, how-
ever, and it is possible that some degree of uniqueness may exist.

The following two theorems indicate certain sufficient conditions
for uniqueness. Since these theorems do not utilize completely the
special characteristics of the matrices in this study, it is probable
that more appropriate theorems can be proved.

5.11. Theorem 6: If p and ¢ are positive integers, if two inte-
gers a and b can be found such that ap — bg =1, and if X is a non-
singular matrix, then the powers X? and X uniquely determine X .
Proof: Suppose that there exist two non-singular matrices X and ¥
such that X? = Y? and X¢= Y?. Then X% = Y* and X% = Y% . Now,
form XY = YWY = Y™ = Y@, gince ap — bg = 1. Similarly
XX = Xbort = Xor, But since X = Y it follows that X"X = X%Y .
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Since X is non-singular, |X%¢| 5= 0, and thus there exists a unique in-
verse of X%, X% such that X-2X* =17 ; therefore X =Y .

5.12. Theorem 7: If n is a positive odd integer and S a real
symmetric matrix, then there is one and only one real symmetric n**
root of S.

Proof: 1. There is one such n* root.

Since S is real and symmetric there exists a real orthogonal
matrix P such that PSP = D (P is the transpose of P) is diagonal
with real entries d;; which are the characteristic roots of S .* Assume
P is so chosen that dy; < doe € -+ < dpm . Let B be the diagonal ma-
trix of the real n roots of the elements of D, i.e., bi; = real (di)*/*,
50

B*=D, ¢y

Define I_B_:: PBP'. Then R = §, for
R*= (PBP)"=PB*P"=PDP =8,

Since B is real and diagonal and P is real and orthogonal, B is real
and symmetric.

2. There is only one such n®* root.

Suppose there exists a real symmetric matrix B; not equal to B
such that B,» = S. Then there exists an orthogonal matrix @ such
that Q'R,Q = T is diagonal in the characteristic roots of E,, and or-
dered as before. Consider the n!* power of T':

Tv= (QR.Q)"= QR Q= Q'SQ
=QPDPQ= (PQ)'D(PQ)
T»=UDU, (2)

where U is the orthogonal matrix P'Q. Since U’ = U, T™ and D are
similar, and hence have the same characteristic roots.t Because they
are diagonal in the characteristic roots, ordered in the same way,
they are equal:

D=Tn~ (3)
Substituting (8) in (2)
D=UDU
or -
UD=DU.

*MacDuffee, C. C. Vectors and matrices. Ithaca, N. Y.: The Mathematical
Association of Ameriea, 1943, pp. 166-170.
+Ibid., p. 113,
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By definition of matrix multiplication this means
D Uil = 2 dijhsnc.
j i

Since D is diagonal, this reduces to
Wil = iM%
or
i (D — d33) =0 . 4)
Since the dy; are real and » is odd, equation (4) implies
il (d) V" — (i) ] =0
where the (du) V" are real. Thus by the definition of B,

UB=BU
or
B=UBU. (5)
By (1) and (3)
T»=D=B",

but by construction T and B are both real diagonal matrices and n
is odd, so this implies

T=EgE.
This substituted in (5) gives
T=UBU=@PBPQ

or
QTQ = PBP.
But QT'Q' = R, and PBP' = R by definition; therefore
R.=R.
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