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 1. Wythoff Games. Let a be a positive integer. Given two piles of tokens, two players move

 alternately. The moves are of two types: a player may remove any positive number of tokens from
 a single pile, or he may take from both piles, say k (> 0) from one and 1 (> 0) from the other,

 provided that I k - 11 < a. The player first unable to move is the loser, his opponent the winner.
 Note that passing is not allowed: each player at his turn has to remove at least one token.

 We show how to beat our adversary recursively, algebraically and arithmetically. In the course
 of doing so we shall meet some unexpected and aesthetically pleasing relationships.

 The classical Wythoff game [9] is the case a = 1, that is, a player taking from both piles has to
 take the same number of tokens from both. See also Coxeter [3]. This special case is reportedly
 played in China under the name of tsianshidsi. A pleasing presentation of tsianshidsi appears in

 Yaglom and Yaglom [10]. A generalization of the game in a different direction was given by

 Connell [2]. A generalization including both that of Connell and the one given here is included in

 [4]. It seems that the more interesting generalization is the one given here, and presenting it alone
 makes it possible to show what is going on in a more transparent manner.

 We start with some notation. Game positions are denoted by (x, y) with x s y, where x
 denotes the number of tokens in one pile and y the number in the other pile. Positions from which
 the Previous player can win whatever move his opponent will make, are called P-positions, and
 those from which the Next player can win whatever move his opponent will make are called
 N-positions. Thus (0, 0) is a P-position for every a, because the first player is unable to move and
 so the second player wins; (0, b), b > 0, is an N-position for every a; the Next player moves to
 (0, 0) and wins. For a = 2, the position (1, 3) is a P-position: if Next moves to (0, 3), (0,2) or (0, 1),
 then Previous, using a move of the first type, moves to (0, 0) and wins. If Next moves to (1, 2) or to
 (1, 1), then Previous, using a move of the second type, can again move to (0, 0).

 The set of all P-positions is denoted by P, and the set of all N-positions by N.

 2. A Recursive Characterization of the P-Positions. A list of the first few P-positions for the
 case a = 2 is given in Table 1. The table has an interesting structure. First note that Bn - = 2 n

 TABLE 1. The first few P-positions of

 Wythoff's game for the case a = 2.

 n Al Bn

 0 0 0

 1 1 3

 2 2 6

 3 4 10

 4 5 13

 5 7 17

 6 8 20

 7 9 23

 8 11 27

 9 12 30

 10 14 34
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 (an in general). It is probably a bit harder to notice that An = mex {A1, Bi: i < n }, where, for any
 set S, if S denotes the complement of S with respect to the nonnegative integers, then
 mex S = min S = least nonnegative integer not in S. (mex stands for minimum excluded value.
 The term has been coined by John H. Conway, I believe.) Thus mex 0 = 0. If we define the pairs

 (An, Bn) in the indicated manner for all n, then (A,,, Bll) = (15,37), since 15 is the smallest
 nonnegative integer not yet in the table.

 We now prove formally that the pairs (An, Bn) as defined above do indeed constitute the set of
 P-positions of the game.

 THEOREM 1. P = U?0%o{(Ai, Bi)}, where An = mex{Ai, Bi: :0 i < n} and Bn = An + an
 (n > O).

 Proof. From the definition of An and Bn as given in the theorem it follows that if A = U? I A
 and B = U= I Bn, then A and B are complementary sets of numbers, that is, A U B = Z+ (the set
 of positive integers), and A n B = 0. The last equality is true since if An = Bm, then n > m
 implies that An is the mex of a set containing Bm = An, a contradiction; and n s m is impossible
 since Bm = Am + am > An + an > An.

 In order to prove the theorem it evidently suffices to show two things: I. A player moving from

 some (An, Bn) lands in a position not of the form (Ai, Bi). II. Given any position (x, y) =# (Ai, Bi),
 there is a move to some (An, Bn). (It is useful to note that these two conditions are also necessary:
 the definition of P and N implies that all positions reachable in one move from a P-position are
 N-positions; whereas at least one P-position is reachable in one move from an N-position.)

 I. A move of the first type from (An, Bn) clearly leads to a position not of the form (Ai, Bi).
 Suppose that a move of the second type from (An, Bn) produces a position (Ai, Bi). Then i < n. A
 move of the second type satisfies I(Bn - B) - (An - A)I < a, that is, |(n - i)a| < a, which
 implies i = n, a contradiction.

 II. Let (x, y) with x < y be a position not of the form (Ai, Bi) (i > 0). Since A and B are
 complementary, every positive integer appears exactly once in exactly one of A and B. Therefore
 we have either x = Bn or else x = An for some n > 0.

 Case (i): x = Bn. Then move y -* An

 Case (ii): x = An. If y > Bn, then move y -- Bn. If A ?y <B, let d y -x, m = Id/a],
 where ix] denotes the largest integer < x. Then move (x, y) -* (Am, Bm). This is a legal move,
 since:

 (a) d = y-An < Bn -An = an, hence m = Ld/ai < d/a < n,
 (b) y=An+d>Am+d>Am+am=Bm,

 (c) 1(y-Bm)-(x-Am)t=I(y-x)-(Bm-Am)I=td-amt<a. U

 In order to play a game such as a Wythoff game as best as possible, it suffices to compute two
 things: (A) the nature of the present position u (P or N); (B) a next move if u is in N. Reason: let
 u be an artibrary game position. If (A) shows that u E N, then we know that there exists some
 move to a position in P. Moreover, we can use (B) to find one. If, on the other hand, (A) shows
 that u E P, we cannot do much better than an arbitrary move while exuding an air of confidence
 and hoping for the best, since any position reachable in one move from a P-position is necessarily
 an N-position, from which our opponent can win if he knows to compute (A) and (B). Now the
 statement of Theorem 1 shows how to compute (A), since the statement constitutes a characteriza-
 tion of the P-positions, whereas the proof of Theorem 1 indicates explicitly how to compute (B).

 The computation of (A) and (B) (or of (B) alone when the computation of (A) is already
 known) will be called a strategy in the sequel. Summarizing our present knowledge, we can thus
 say that Theorem 1 and its proof jointly constitute a recursive strategy for Wythoff games in
 which each P-position can be computed from the previous ones.

 We close this section by briefly considering the complexity of the indicated strategy. Given a
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 position (x, y) with 0 < x < y, we need, for computing the next move, to construct the table
 recursively only up to the smallest n such that either An = x or Bn = x. Since An < 2n for every a
 (follows from Bn - Bn_ > 2), this computation requires only O(x) comparisons of table entries
 with x, and O(x) words of memory space. We remark that once the table has been computed and
 stored, it takes only 0(log x) steps to locate An such that x = An (or Bn such that x = Bn), by
 performing a binary search in the An (or Bn) sequence. Since computing (B) by the method
 indicated in the proof of Theorem 1 requires at most 0(log x) steps, the total number of
 computation steps is only O(x). In the next section we give a closed form for the nth P-position,
 which enables us to beat our adversary using an explicit rather than only an implicit recursive
 construction, which is at the same time computationally more efficient!

 3. An Algebraic Characterizatioii of the P-Positions. Let

 2-a + ra2 + 4
 ae = ~~ 2 f A = a + a. (1)

 a is the positive root of the quadratic equation - + (t + a)- 1. Thus a and ,B are irrational
 for every positive integer a, and satisfy a - l + ,B1 = 1.

 The following "folk-theorem" dates back at least to Beatty [1]. It has many proofs and has
 often been rediscovered. The proof given below seems to be one of the most elegant ones. I have
 heard that it is due to Ostrowski.

 LEMMA 1. Let a and ,B be positive irrationals satisfying a1 + J- = 1. Let A' = ma], Bn,
 = [n18] A' = U?={A'} and B' = U=1{Bn}. Then A' and B' are complementary.

 Proof. It suffices to show that exactly one member of the sequence a,= {, 2, 2a, 2,,
 3a, 3,8,. .. ,n a, nX,. . . } is in the interval [h, h +'1) for every positive integer h. Hence it suffices
 to show that if M > 1 is any integer, then there are precisely M - 1 members of D less than M.
 The number of n a < M is [M/la] and the number of n,8 < M is [M/,8]. Thus the number of
 members of ' less than M is N = L aM/a] + L M/1,8. Now

 M < M - < M, fM, < M 2 < M8

 Adding, M -2 < N < M. Since N is an integer, we conclude N = M - 1. M
 Note that A' = 0 = AO, Bo = 0 = Bo and Bn, = A' + an. Moreover, mex{A', B': 0 < i < n}

 = A' (n > 0), since A' and Bn, are increasing sequences and A' and B' are complementary: if the
 mex were not A', then A' would never be obtained! This shows that Al = An and Bn, = Bn
 (n > 0). We have proved:

 THEOREM 2. If a and /8 are given by (1), then P = U O{( Lna], Ln/8])1

 A strategy based on this observation can be realized as follows. Since a is irrational and
 1 <a<2,

 xlx x llx+lIIxI

 xL= na] ~x <na <x+ 1 x- <n < a Jk +l1)
 where (x, y) with x - y is a given game position. Therefore either x = LnaJ = An where n
 = L(x + 1)/a], or else, by complementarity, x = LnflJ = Bn, where n = [(x + 1)/,B]. We have
 thus reduced the situation to that considered in cases (ii) and (i) in the proof of Theorem 1, and
 hence the strategy presented in that proof can be followed. For example, if x = In a] = An and
 y < In a] + na = [n,8], then letting m = (y-x)/a], we move to ( [m a], [mfl]) E P. For
 implementing this strategy, a has to be computed to a precision of 0(log x) digits, and its storage
 requires 0(log x) words, which is only the same order of magnitude needed for storing x itself (in
 binary or decimal, say).
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 In order to give still another unexpected way for beating our opponent, we resort to the theory
 of continued fractions.

 4. Continued Fractions and Systems of Numeration. Let a be an irrational number satisfying
 1 < a < 2. Denote its simple continued fraction expansion by

 1 = [1, a,, a2, a3,...],
 a1+

 a, + 1
 a2 +

 a3 +

 where the ai are positive integers. Its convergents pn/qn = [1, al,... ,an] satisfy the recursion

 P- I 1, po 1 pn anPn- I + Pn-2 (n > 1

 q- O, qo 1, qn anqn-I + qn-2 (n >1).
 We do not need much more on continued fractions. The reader who wishes to read up on the

 theory of continued fractions may like to consult, for example, Hardy and Wright [5, Ch. 10], Olds
 [7] or Perron [8]. What we do need is the fact that every irrational number has a unique expansion
 into an infinite continued fraction and that conversely, every infinite continued fraction represents
 a unique irrational number. Moreover, we will use the fact that a = [1, ai] where a is given by (1)
 and a denotes the infinite repetition of a, and a property stated just prior to Lemma 3 below.

 In the next theorem we give two systems of numeration, one based on the numerators Pi and
 one on the denominators qi of the convergents of a. The two systems are called p-system and
 q-system in the sequel.

 THEOREM 3. Every positive integer can be written uniquely in the form
 m

 N =2 sipi,o 0 < si -- ai+ 1, si+ I = ai+2 'Si = 0 (i > ?)' (2)
 i=O

 and also in the form
 n

 N = tiqi, 0 < to < al,, < ti < ai+ 1, ti = ai+ IX= ti- I = O (i > 1). (3)
 i=O

 Note. Putting ai = 1 (i > 1), (2) becomes the Fibonacci counting system, in which all the digits
 si are 0 or 1. This is the usual binary numeration system, except that there are never two
 consecutive ones. This system is discussed, e.g., in Knuth [6, Sect. 1.2.8, Ex. 34] and in Yaglom
 and Yaglom [10].

 Table 2 displays the representation of the first few positive integers in the p and q-systems for

 the case ai = 2 (i > 1).

 Proof. We shall prove the result for the p-system. The proof for the q-system is very similar.
 Given a positive integer N, let m be the largest integer such that Pm < N. Write

 N smPm + rm, 0 < rm < Pm
 rm sm-iPm-I + rm-1, 0< rm-l <Pm-1

 ri+l I sipi + ri, 0 < r, < Pi

 r2 = SIPI + rl, 0< r, <pl
 r= soPo.
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 TABLE 2. The representation of the first few positive integers in the p and q-systems for the case ai 2 (i > 1)

 q3 q2 q, qo P3 P2 Pi Po
 12 5 2 1 17 7 3 1 n

 I I I
 1 0 2 2
 I 1 1 0 3
 2 0 1 1 4

 1 0 0 1 2 5
 1 0 1 2 0 6
 I 1 0 1 0 0 7
 I 1 1 1 0 1 8
 1 2 0 1 0 2 9
 2 0 0 1 1 0 10
 2 0 1 1 1 1 11

 1 0 0 0 1 1 2 12
 1 0 0 1 1 2 0 13
 1 0 1 0 2 0 0 14
 1 0 1 1 2 0 1 15
 1 0 2 0 2 0 2 16
 I 1 0 0 1 0 0 0 17

 Thus
 m

 N =2 8iPi, 4
 i=O

 that is, N is representable in the p-system. (The careful reader will note that up to this point we
 have not used properties of continued fractions. Thus if 1 = PO < P I < P2 < ... is any sequence
 of positive integers, then the representation (4) holds. Letting, e.g., pi = b1 (b > 1 fixed) leads to
 the usual representation of N to the base b.) The digits si of the representation (4) satisfy

 ,+ I' t < Pi+ I ai+ I Pi + Pi- I Pi Si = - < ~ ~ ~ aj+j+ ~ aj+j + 1
 Pi Pi Pi Pi

 and sO 0 ? si < ai+I (i > 0). (However, since q_ = 0, we get to < a, for the q-system.) Suppose
 that si = ai+ I and si- I > 1. Then

 ri ;?,pi- I and so ri+ I > ai+ pi + Pi-lI = Pi+ I,

 a contradiction. Hence si = ai+I si I = 0 (i > 1).
 For proving uniqueness we need the following auxiliary result.

 LEMMA 2. Let

 Hi+= ai+pi + ai-lPi-2 + +ak+lPk,

 where k = 0 if i is even, k = 1 if i is odd. Then Hi+I =pi+I - 1.

 In other words, the expression Hi+ I is the equivalent in the p-system of 99....9 in the decimal
 system.

 Proof. We addpi- l- pi- I to the first term,Pi-3 -Pi-3 to the second, etc. Usingpn = anPn- I
 + Pn-2 (n 1), we then get

 Hi+ = (Pi+I -Pi-) + (Pi-I Pi-3) + + (P2-Po) (iodd).

 Sincepo = 1, we get in both cases Hi+ l-Pi+ - 1. l
 We now resume the proof of Theorem 3. Suppose that N has two different representations:
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 m m

 N= >2siPi= uipi,
 i=O i=O

 where the digits si and ui satisfy the conditions imposed in (2). Letj be the largest integer such
 that s z i u;, say si > u;. Then

 j-l j-l

 p1 < (si - Uj)p = 2 (ui - si)pi a uiPi
 i=O i=O

 [(j- 1)/2J
 < z aja2iPj-2i- 1 = - 1,

 i=O

 a contradiction. (The last equality in this chain is Lemma 2, and the inequality just preceding it
 follows from the identity

 ai+ pi > (ai+I - I)pi + aipi1 (i - 1).) I
 We close this section with two definitions which will be useful in the next and final section.

 (i) Relative to a simple continued fraction a = [1, a1, a2,...], we define a representation R to
 be an (m + I)-tuple

 R = (dm, dmiv,...dl, do),

 where

 0<di1ai+1 and di+1=ai+2=wdi=0 (i0>).

 If it is known that di- I = di-2 = ... = do = 0, we also write R = (dm. . . , di) instead of
 (dm .. . , di, O,. . . , 0). The p-interpretation Ip of a representation R = (dm .. .I do) is the number
 Ip = lim=o dipi. The q-interpretation of R is the number Iq = im % diqi, provided that do < a,;
 otherwise there is no q-interpretation of R. Given any positive integer k, we say that its

 p-representation Rp(k) (or q-representation Rq(k)) is (dm... . .,do) if
 m m

 k= 2 dipi or k= 2 diqi,do<a ).
 i=o i=o

 We shall later be interested in p-interpretations of q-representations! Thus for a1 = 2 (i > 1), the
 decimal number 12 has q-representation 1000 (see Table 2), whose p-interpretation is 17. In other

 words, Ip(Rq(12)) = Ip(1000) -17.
 (ii) If R = (dm. ... Ido) is any representation (which might be Rp(k) or Rq(k) for some
 positive integer k), then the representation R' = (dm. .. , do, 0) is called a left shift of R. In other
 words, R' is obtained from R by shifting each digit di of R left by one place and inserting a zero at
 the right. If R = (dm,... ,d1, do) is a representation with do = 0, then the representation
 R = (dm. .. , dl) is called a right shift of R.

 5. An Arithmetic Characterization of the P-positions. We use the new numeration system
 introduced in the last section to give yet another, quite different, characterization of the
 P-positions.

 Comparing Tables 1 and 2 we notice three interesting patterns. In Theorems 4 and 5 below we
 show that they hold indeed, in general, in the form of the following three properties.

 Property 1. The set of numbers An = mex{Ai, Bi: 0 < i < n} (n > 1) is identical to the set of
 numbers with p-representations ending in an even number of zeros; and the set of numbers

 Bn = An + an (n > 1) is identical to the set of numbers with p-representations ending in an odd
 number of zeros. Thus in Table 2 Rp(1) ends in an even number (zero) of zeros, and so does Rp(7)
 (ending in two zeros). Both 1 and 7 are in the An-column of Table 1.

 Property 2. For every n > 1, the p-representation of Bn is a left shift of An: Rp(Bn) = Rp(A J
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 (Thus (1, 3) of Table 1 has p-representation (1, 10), and (5, 13) has p-representation (12, 120).)

 Property 3. Let n be any positive integer. If Rq(n) ends in an even number of zeros, then
 Ip(Rq(n)) = An. (Thus for ai = 2 (i > 1), Ip(Rq(5)) = Ip(100) = 7 = A5.) If Rq(n) ends in an
 odd number of zeros, then Ip(Rq(n)) = An + 1. (Thus for the case above, Ip(Rq(4)) = Ip(20) = 6
 =A4 + 1.)

 For proving these properties we need an auxiliary result. Let a = [1, a1, a2,...] be irrational
 with convergents fpi/qi}. Let Di = apqi-p1 (i p 1). From the theory of continued fractions it is
 known that

 -1 = D- I < DI < D3 < ... < Q < ... <D4<D2<D0=a- 1.

 LEMMA 3. Dj + EilI aj+2iD+2i- I = Dj+2m (i U 1).

 Proof. We have

 Dj + aj+2Dj+1 = aqj -pj + aj+2(lqj+ I-Pj+1) Dj+2
 Thus

 Dj + aj+2Dj+1 = Dj+2
 Dj+2 + aj+4Dj+3 = Dj+

 Dj+2m-2 + aj+2mDj+2m-1 = Dj+2m.

 Adding proves the assertion. D

 The proof of Property 3 follows from the next theorem.

 THEoREM 4. Let a- = [1, a1, a2,...] be irrational with convergents {pi/qi}. Let n be a positive
 integer. If Rq(n) = (d,... *d2k) (d2k : 0, k ; 0), then Ip(Rq(n)) = [naJ. (That is,

 m m

 n = 2 diqi [no-] = 2 dipi.)
 i=2k i=2k

 If Rq(n) = (dm ,. . ,d2k+l) (d2k+l : 0, k > 0), then Ip(Rq(n)) = LnaJ + 1. (That is,
 m - m

 n = 2 diqinaL =-1 + 2 dipi
 i=2k+ I i=2k+ I

 k m

 Y. a2i+lP2i +(d2k+v 1)P2k+1 + E dipi
 i=O i=2k+2

 where the last equality follows from Lemma 2.)

 Proof. For the first case it suffices to show that
 m

 0 < na- 2 dipi < 1
 i=2k

 that is,
 m

 0 < 2 diDi < 1.
 i=2k

 By Lemma 3,
 m m

 E diDi > D2k + z a2k+2iD2k+2i-I = D2k+2m > 0,
 i=2k i=1
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 m m

 2 diDi 2 E a2k+2i-ID2k+2i-2 = D2k+2m - -D2k- I
 i=2k i=I

 < D2k+2m-1 + 1 < 1.

 For the second case it suffices to show that

 m

 -1< E diDi<0.
 i=2k+ I

 Again by Lemma 3,
 m m

 2 diDi 2 E a2k+2iD2k+2i-l = D2k+2m- D2k
 i=2k+1 i=1

 - D2k ;;,-Do = 1-x > -1,
 m m

 2 diDi ?D2k+1 + a2k+2i+ ID2k+2i = D2k+2m+1 < ?U
 i=2k+l i=1

 We now prove Property 2.

 THEOREM 5. Let a = [1, a], ,B = a + a, where a is any positive integer. Then for every positive

 integer n, Rp( L nflJ) = Rp( L nat]).

 Proof. We have La = = I pO, LfBJ = 1 + a = p ; hence the claim holds for n = 1. Suppose
 it holds for all k < n. Now Rp( In a]) ends in an even number of zeros by Theorem 4. Let R' be
 the left shift of Rp( L na]). By the induction hypothesis, Ip(R') : L k13, k < n. In fact, Ip(R') is
 the smallest number with representation R' ending in an odd number of zeros not yet obtained. If

 Ip(R') : Lnf3J, then Ip(R') can never be obtained for k > n, since the sequence Lk,3J is
 increasing, in contradiction to Lemma 1. U

 Theorem 4 asserts that Rp( L n a]) ends in an even number of zeros for all n. Theorem 5 implies,
 in particular, that RP( Lnn]) ends in an odd number of zeros for all n. Since the sequences L n a]
 and I n13 are complementary, every positive integer k such that Rp(k) ends in an even (odd)
 number of zeros has the form L na] ( L nP]). This proves Property 1.

 Now suppose we are given a position (x, y) with 0 < x < y. To obtain a strategy based on

 Theorems 4 and 5, we compute Rp(x). If it ends in an odd number of zeros, then x = Bk for some

 k, and a winning move is (x, y) -- (Ip(Rp(x)), x) E P. If Rp(x) ends in an even number of
 zeros, then x = Ak for some k. If y > Ip(Rp(x)), then the move (x, y) -* (x, Ip(Rp(x))) E P is a
 winning move. If y = Ip(Rp(x)), then (x, y) E P, so we cannot win when starting from the given
 position (x, y). Finally, if x ?y < Ip(Rp(x)), then let m = [(y - x)/aJ. If Rq(m) ends in an
 even number of zeros, then Ip(Rq(m)) = Am by Theorem 4. If Rq(m) ends in an odd number of

 zeros, then Ip(Rq(m)) = Am + 1. In either case, a winning move is (x, y) * (Am, Am + ma) E P.
 In order to estimate the complexity of this algorithm note that for a = a1 = [1, a], the solution

 of the recursionp_ = 1, po = 1, Pn = apn- I + Pn-2 ( n > 1) is

 Pn I= _ (l(l + a- 1)-l+ -at2(a2+a- 1)nl+)

 1 | a + /a 2 + 4 n+1 a a-+a2 + 4 n+1
 a2+4 , 2 2 2

 ari k a(a42 ~ 2 24n1

 where

 2-a + /a2 + 4 2-a- a2+ 4
 a1 = 2 a2 2
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 are the two roots of the quadratic equation + ? (+ ? a)1 = 1. Since -1 < a 2 + a - 1 < 0,

 we havep,, -.cgn+l, where c = ail/ Va2 + 4 and g =(a + ja2 + 4)/2.
 Let n be the largest integer such that x > p,. Since p,n cg'+Il we see that n = O(log x) steps

 suffice to compute Rp(x) and O(log x) words of memory suffice to store it, since for computing
 Rp(x) we need only the first O(log x) values of pi. For the case An = x < y < B, since m
 = (y -x)/aJ < n, the computation of Rq(m) also requires at most O(log x) steps and that
 much memory space. Since n logg(x/c) and g increases with a, it is seen that for large a this
 strategy implementation is more efficient than even the algebraic one of the previous section.
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 Lines written after reading too many abstracts of talks at a Mathematics meeting (after
 Shakespeare, Sonnet 130, "My mistress' eyes are nothing like the sun")

 No diagrams within my work commute;
 Language will do. Against the tide of groups,
 Lie, semisimple-I'm with King Canute.
 Let others prate of posets and of loops,
 Functors and morphisms, maximal ideals;
 Give me the cliches of an earlier age.
 Let no nonstandard models of the reals,
 Sur- or bijections decorate my page.
 The complex plane contains enough; for me
 No sheaves of germs upon a manifold.
 I'll never be approved by Bourbaki;
 Words grow apace, but still my soul's not sold.

 And yet I think my work was as profound
 As this, tricked out with terms of modish sound.
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