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Familiarity with basic topics in functional analysis is expected: Banach spaces,
Hilbert spaces, bounded linear operators, algebraic inverse vs topological inverse,
dual spaces, Hahn-Banach theorem and its consequences. Chapter 1, 2, 4.2, 6, 7.2 of
lecture note of Oxford course B4.1 Functional Analysis I will be enough. Please see
https://courses.maths.ox.ac.uk/pluginfile.php/105425/mod_resource/content/

22/B4.1LectureNotes.pdf.
We will basically follow the material from the last bit of Cambridge Part III

course Functional Analysis, for details see https://minterscompactness.wordpress.
com/wp-content/uploads/2018/09/functional-analysis-part-iii-notes.pdf.

1. Introduction

Let H be a Hilbert space and T be a compact, self-adjoint operator on H. Then
we have a spectrum decomposition of T . As T is compact, σ(T ) \ {0} = σP (T )

is countable and 0 ∈ σP (T ). Let σP (T ) = {λ1, λ2, · · · } and Ek be the associated
eigenspace of λk. Then

Tx =

∞∑
k=1

λkPEk
x

where PEk
is the orthogonal projection on Ek, and the convergence is in the sense

of operator norm. Being slightly crazy, if PEk
can be thought as some “measure” on

some “sets”, i.e., PEk
= m(Fk) for some Fk inside a single, say, compact Hausdorff

topological space, then we can write

T =

∞∑
k=1

λkPEk
=

∞∑
k=1

λkm(Fk) =

∫ ∞∑
k=1

λk1Fk
dm.
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2 YUCHEN FAN

This is where Boerl Functional Calculus comes from. Indeed we can use this in-
tuition to define a more general version of spectral theories, which we will give an
introduction in this note.

2. Banach and C∗-algebra

Let B(H) denotes the space of bounded linear operators on H. Then by Riesz
representation theorem, for each T ∈ B(H) there exists a unique T ∗ ∈ B(H) such
that ⟨Tx, y⟩ = ⟨x, T ∗y⟩. Now we have some simple properties of T and T ∗:

(1) (λT + µS)∗ = λ̄T ∗ + µ̄S∗;
(2) (TS)∗ = S∗T ∗;
(3) T ∗∗ = T ;
(4) ∥T ∗T∥ = ∥T∥2.

We also survey some general properties for B(H): For T, S ∈ B(H), we have
TS ∈ B(H) and ∥TS∥ ≤ ∥T∥∥S∥. Now we abstract everything out, get rid of
H and arrive at the definitions:

Definition 2.1. An algebra A over a field F is a vector space equipped with addition
+, vector multiplication × and scalar multiplication · such that

(1) ∀a, b, c ∈ A, we have a× (b× c) = (a× b)× c;
(2) ∀a, b ∈ A, λ ∈ F, we have λ · (a× b) = (λ · a)× b = a× (λ · b);
(3) ∀a, b, c ∈ A, we have a× (b+ c) = a× b+ a× c.

We also notice that there is an identity in B(H), so we should separate those
algebras with identity out.

Definition 2.2. An unital algebra is an algebra A with an element 1 ̸= 0 in A
such that ∀a ∈ A, we have 1 · a = a · 1 = a.

We always want a norm to study infinite dimensional spaces.

Definition 2.3. An algebra norm on an algebra A is a vector space norm ∥ · ∥ :
A → R such that ∥ab∥ ≤ ∥a∥∥b∥ ∀a, b ∈ A. The pair (A, ∥ · ∥) is called a normed
algebra. In particular this ensures vector multiplication is continuous.

An unital normed algebra is a normed algebra A which is also a unital algebra
and satisfies ∥1∥ = 1.

A Banach Algebra is a complete, normed algebra. We will abbreviate it as BA.

We finally arrive at the definition of a C∗-algebra.

Definition 2.4. An involution is a map ∗ : A→ A, sending x 7→ x∗, such that:

(1) (λx+ µy)∗ = λ̄x∗ + µ̄y∗;
(2) (xy)∗ = y∗x∗;
(3) x∗∗ = x.

for all x, y ∈ A, λ, µ ∈ C.

Definition 2.5. A C∗-algebra is a Banach algebra with an involution ∗ such that
the C∗-equation holds:

∥x∗x∥ = ∥x∥2 ∀x ∈ A.

We have the abstract versions of different operators:

Definition 2.6. We say:

(1) x is self-adjoint (Hermitian) if x∗ = x;
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(2) x is unitary if A is unital, and x∗x = xx∗ = 1;
(3) x is normal if x∗x = xx∗.

Definition 2.7. A homomorphism θ between two algebras A and B is a linear map
such that θ(xy) = θ(x)θ(y). If A, B are unital with units 1A and 1B respectively,
then θ is a unital homomorphism if θ(1A) = 1B as well.

Definition 2.8. A ∗-homomorphism between C∗-algebras A,B is a homomor-
phism θ : A → B such that θ(x∗) = (θ(x))∗. A ∗-isomorphism is a bijective
∗-homomorphism.

3. Borel Functional Calculus

Let K be a compact, Hausdorff topological space and BK be the Borel sigma
algebra on K. we define our vector-valued measure on BK .

Definition 3.1. A resolution of the identity of H over K is a map P : BK → B(H)
such that:

(1) P (∅) = 0 and P (K) = IH ;
(2) P (E) is an orthogonal projection E ∈ BK ;
(3) P (E ∩ F ) = P (E)P (F ) for any E,F ∈ BK ;
(4) If E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ) (not necessarily countably

additive);
(5) ∀x, y ∈ H, the map Px,y : BK → C given by:

Px,y(E) := ⟨(P (E))(x), y⟩

is a regular Borel measure on K.

When doing integration, we consider an analogous of L∞ spaces:

Definition 3.2. A Borel function f : K → C is P -essentially bounded if there
exists a Borel set E with P (E) = 0 such that f is bounded on K \ E. We define

L∞(P ) := {f : f : K → C is Borel and P -essentially bounded}

equipped with norm

∥f∥∞ := inf

{
∥f∥K\E := sup

K\E
|f | : E ∈ BK such that P (E) = 0

}
.

Let L∞
s (P ) be the subspace of simple functions in L∞(P ).

We firstly consider the integral on simple functions: Let s be a simple function.
WLOG we can suppose (Ei)1≤i≤m is a Borel partition of K and s =

∑m
i=1 ai1Ei

(why?). Define ∫
K

s dP =

m∑
i=1

aiP (Ei).

We have to check that it is well-defined. Let s =
∑n

i=1 bi1Fi
be another represen-

tation of s, where (Fi)1≤i≤n is another Borel partition of K. As they both agree
we have, by considering Ei ∩ Fj , that either ai = bj or P (Ei ∩ Fj) = 0. Hence

aiP (Ei ∩ Fj) = bjP (Ei ∩ Fj).
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By using the identity

P (Ei) = P (Ei ∩K) = P

Ei ∩
n⋃

j=1

Fj

 =

n∑
j=1

P (Ei ∩ Fj) ,

we have
m∑
i=1

aiP (Ei) =
∑
i,j

aiP (Ei ∩ Fj) =
∑
i,j

bjP (Ei ∩ Fj) =

n∑
j=1

bjP (Fj) .

We have some useful facts about such integral

Proposition 3.3. The map

Φ : L∞
s (P ) → B(H), L∞

s (P ) ∋ s→
∫
K

s dP

is an isometric ∗-homomorphism such that

(1) Φ(1k) = IH ;
(2) ⟨Φ(s)(x), y⟩ =

∫
K
s dPx,y;

(3) ∥Φ(s)(x)∥2 =
∫
K
|s|2 dPx,x.

Proof. (1) is trivial. We check it is an isometric injective ∗-homeomorphism first.
Linearity could be check with some careful arguments like above. Now as P (Ei)
are orthogonal projections we have P (Ei)

∗ = P (Ei) (why?), so

(Φ(s))∗ =

(
m∑
i=1

aiP (Ei)

)∗

=

n∑
i=1

aiP (Ei) = Φ(s̄).

We also notice that if s =
∑m

i=1 ai1Ei
and t =

∑n
i=1 bi1Fi

we have st =
∑

i,j aibj1Ei∩Fj

and hence

Φ(st) =
∑
i,j

aibjP (Ei ∩ Fj) = Φ(st) =
∑
i,j

aibjP (Ei)P (Fj) = Φ(s)Φ(t).

Thus indeed Φ is a ∗-homeomorphism. Now simply calculate

⟨Φ(s)x, y⟩ =
m∑
i=1

ai ⟨P (Ei)x, y⟩ =
m∑
i=1

aiPx,y (Ei) =

∫
K

s dPx,y,

so (2) holds. For (3) set y = Φ(s)(x) we have

Px,Φ(s)(x) (Ei) =

〈
P (Ei)x,

m∑
i=1

aiP (Ei)(x)

〉
= ai ⟨P (Ei)x, P (Ei)x⟩ = aiPx,x(Ei)

where we have used the fact that P (Ei) are self-adjoint and P (Ei ∩ Ej) = 0. Now
we check the isometry. By (3) we see that

∥Φ(s)(x)∥2 =

∫
K

|s|2 dPx,x =

n∑
i=1

|ai|2⟨P (Ei)x, x⟩ ≤ sup
i

|ai|2∥x∥2.

Hence, ∥Φ(s)∥ ≤ ∥s∥∞ = supi |ai|. As i = 1, 2, · · · ,m is finite, supi |ai| is attended
by sum aj where Ej is non-null. Take x ∈ Im(P (Ej)) we have ∥Φ(s)(x)∥ = |aj |∥x∥
so ∥Φ(s)∥ = ∥s∥∞. □

As L∞
s (P ) is dense in L∞(p), by isomstry property we can extend Φ to L∞(P ):
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Proposition 3.4. (Borel Functional Calculus) There exists a unique map

Φ : L∞(P ) → B(H), L∞(P ) ∋ f →
∫
K

f dP

is an isometric ∗-homomorphism such that

(1) Φ(1k) = IH ;
(2) ⟨Φ(f)(x), y⟩ =

∫
K
f dPx,y;

(3) ∥Φ(f)(x)∥2 =
∫
K
|f |2 dPx,x;

(4) S ∈ B(H) commutes with every Φ(f) if and only if S commutes with P (E)
for every E ∈ BK .

Proof. We only need to check uniqueness and (4). For (4), If S commutes with every
P (E) then by taking approximation by simple functions, we have S commutes with
every Φ(f). The other direction is trivial. For uniqueness, let Ψ be another such
map, then

⟨Φ(f)(x), y⟩ =
∫
K

f dPx,y = ⟨Ψ(f)(x), y⟩

for any x, y ∈ H, By taking y = Φ(f)(x)−Ψ(f)(x) we are done. □

4. Spectral Theory

4.1. Spectrums. Now we would like to talk about invertibility of some elements
in a Banach algebra or C∗-algebra A. In particular we can define the spectrum
of any element x ∈ A be exactly the same as how we define it for bounded linear
operators.

Definition 4.1. For an unital algebra A and x ∈ A we define the spectrum σ(x)
as

σ(x) = {λ ∈ C : x− λ is not invertible}.
In here we are going to develop a very general notion of spectrum and prove

the corresponding spectral theories under these notions. In the following, unless
specifically noted, A denotes a unital Banach algebra.

Lemma 4.2. If ∥1− a∥ < 1, then a is invertible and ∥a−1∥ ≤ 1
1−∥1−a∥ .

Proof. Let x = 1− a, then
∑∞

i=1 x
i is the explicit inverse of a, which converges as

it converges absolutely. □

From this we can easily show that if G(A) denotes the invertible elements of A,
then G(A) is open.

Theorem 4.3. Let x ∈ A, then σ(x) is a non-empty, compact and is contained in
B∥x∥(0) = {λ ∈ C : |λ| ≤ ∥x∥}.
Proof. By Lemma 4.2 we have x − λ is invertible if λ > ∥x∥, so the last part is
proven. If x − λ is invertible, then for any µ such that |µ − λ| < ∥x − λ∥, µ − x
is invertible. So C \ σ(x) is open and hence σ(x) is closed and bounded, hence
compact.

The only non-trivial part is the non-emptiness. Suppose that σ(x) is empty.
Then for any bounded linear functional f on A, gf : λ → f

(
(x− λ)−1

)
is a holo-

morphic function on C (why?). Since for λ > 2∥x∥,

∥(x− λ)−1∥ ≤ 1

|λ|

∞∑
i=0

∥∥∥x
λ

∥∥∥i ≤ 1

∥x∥
,
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we have gf is bounded, and hence constant by Louville’s theorem. This implies
that (x− λ)−1 is constant over all λ, which is impossible. □

We also have the spectrum radius

Definition 4.4. The spectrum radius of x ∈ A, r(x), is defined as

r(x) = sup{|λ| : λ ∈ σ(x)}.

We note a formula for spectrum radius that we do not prove here:

Theorem 4.5. (Gelfand’s formula)

r(x) = lim
n→∞

∥xn∥1/n = inf
n

∥xn∥1/n

for any x ∈ A.

4.2. Gelfand Transform. We notice that it is possible to define the “dual” space
on a Banach algebra:

Definition 4.6. A character on an algebra A is a non-zero homomorphism A→ C.
Let ΦA denotes the set of all characters on A.

Proposition 4.7. Let φ ∈ ΦA. Then φ is continuous and ∥φ∥ = 1.

Proof. Given x ∈ A, suppose |φ(x)| > ∥x∥. Then we have ∥x/φ(x)∥ < 1, and so by
Lemma 4.2, we have 1 − x/φ(x) ∈ G(A). Let z ∈ A be the inverse of 1 − x/φ(x).
Then apply φ to this expression, we have

1 = φ(1) = φ(z) · φ(1− x/φ(x))︸ ︷︷ ︸
=0

,

contradiction. Hence |φ(x)| ≤ ∥x∥. Take x = 1 we have ∥φ∥ = 1. □

Lemma 4.8. Let I be a proper ideal of A. Then I is a proper ideal of A.

Proof. As I is proper, I ∩G(A) = ∅. As G(A) is open, I ∩G(A) = ∅. By continuity
of multiplication and addition, I is an ideal hence proper. □

Let MA be the collection of all maximal ideals of A.

Proposition 4.9. Let A be commutative, then its maximal ideals are exactly the
kernel of its characters.

Proof. For each φ, ker(φ) is a maximal ideal. Since φ ̸≡ 0, ker(φ) has co-dimension
1. So it follows that ker(φ) is maximal.

Assume that ker(φ) = ker(ψ), for some φ,ψ ∈ ΦA. Then given x ∈ A, we have:
x− φ(x) ∈ ker(φ) = ker(ψ). Hence ψ(x− φ(x)) = ψ(x)− φ(x) = 0. Hence ψ = φ.

Let M be a maximal ideal, then A/M is a field and it is isomorphic to C (topo-
logically, check why) and the quotient map A→ A/M defines a character. □

Theorem 4.10. Let A be commutative and let x ∈ A. Then:

(1) x ∈ G(A) ⇔ x /∈ ker(φ) for any character φ;
(2) σ(x) = {φ(x) : φ ∈ ΦA};
(3) r(x) = sup {|φ(x)| : φ ∈ ΦA}.
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Proof. (1) follows from proposition 4.9.
For (2), let λ ∈ σ(x) and then by (1) there exists character φ such that λ− x ∈

ker(φ), so λ = φ(x). If λ = φ(x) for some φ ∈ ΦA then λ− x ∈ ker(φ) so it is not
invertible by (1).

(3) follows immediately from (2). □

Exercise 4.11. Prove the following formulas: Suppose A is not necessarily com-
mutative but x, y commutes, then we have

r(x+ y) ≤ r(x) + r(y) and r(xy) ≤ r(x)r(y).

Equip ΦA with the topology that, ΦA ∋ fn → f if and only if fn(x) → f(x) for
any x ∈ A. This is called the weak ∗ topology (w∗) of ΦA, which makes (ΦA, w

∗) into
a compact, Hausdorff space (Banach-Alaoglu Theorem). Then we see as spectrum
can be represented by characters, we have the natural identification:

Definition 4.12. (ΦA, w
∗) is called the spectrum of A. The map x̂ : ΦA → C

defined by x̂(φ) = φ(x) is called the Gelfand transform of x. The map x → x̂ is
called the Gelfand map.

By Theorem 4.10 we see that the image of x̂ is σ(x), and x̂ is a continuous map
on ΦA. We note that C(ΦA) can be identified as a Banach algebra equipped with
the supremum norm ∥f∥∞ = supx∈ΦA

|f(x)|.

Theorem 4.13. (Gelfand Representation Theorem) The Gelfand map is a contin-
uous unital homomorphism, and:

(1) ∥x̂∥∞ = r(x);
(2) σ(x̂) = σ(x);
(3) x̂ ∈ G (C (ΦA)) ⇔ x ∈ G(A).

Proof. To check homomorphism is easy, and (1) follows immediately from Theorem
4.10 (3), and boundness follows.

For (2), we note that the spectrum of a continuous function on a compact set is
just the image of it (why?), so σ(x̂) = Im(x̂) = σ(x).

For (3), x̂ ∈ G (C (ΦA)) if and only if 0 /∈ σ(x̂), if and only if 0 /∈ σ(x), if and
only if x is invertible. □

For the case of a C∗-algebra, their characters behave better:

Theorem 4.14. (Commutative Gelfand-Naimark Theorem). Let A be a com-
mutative, unital C∗-algebra. Then, the Gelfand map x 7→ x̂, is an isometric ∗-
isomorphism between A and C(ΦA). This means all C∗-algebras are C(K) for
some compact, Hausdorff space K.

Proof. We proof an intuitive lemma first

Lemma 4.15. Let A be an unital C∗-algebra. Then characters on A are ∗-
homomorphisms.

Proof. We check φ(x∗) = φ(x). Suppose x is self-adjoint, and φ(x) = α + iβ with
α, β ∈ R. Then for t ∈ R, let zt = x+ it. Then:

|φ (zt)|2 = |α+ i(β + t)|2 = α2 + (β + t)2.

But we also have

|φ (zt)|2 ≤ ∥zt∥2 = ∥z∗t zt∥ = ∥(x− it)(x+ it)∥ =
∥∥x2 + t2

∥∥ ≤ ∥x∥2 + t2
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So hence we see

α+ 2βt+ β2 ≤ ∥x∥2

and this is true for all t. Hence we must have β = 0 and that φ(x) ∈ R.
Now assume x is arbitrary. Then we can write x = h + ik, where h, k are

self-adjoint (why?). Then x∗ = h− ik and

φ (x∗) = φ(h)− iφ(k) = (φ(h) + iφ(k)) = φ(x)

where we used φ(h), φ(k) ∈ R by the self-adjoint case above. □

We check that the Gelfand map is a isometric surjective ∗-homomorphism. No-
tice that x̂∗(φ) = φ(x∗) = φ(x) = x̂(φ)∗, so indeed it is a ∗-homomorphism.

For isometric we see immediately as ∥x̂∥∞ = r(x) = ∥x∥. The last equality
follows, as A is commutative and hence x is always normal, and for normal element
we have ∥x∥ = r(x) by using Gelfand formula.

For surjective, we see that the image of Gelfand map is a closed unital ∗-
subalgebra that seperate points. Hence by Stone-Weiestrass theorem (A unital
∗-subalgebra of C(K) that separates point is dense in C(K), for any compact
Hausdorff space K) we see that it is C(ΦA). □

Corollary 4.16. Let A be a unital C∗-algebra. Let x ∈ A and φ ∈ ΦA.

x self-adjoint ⇒ φ(x) ∈ R
x unitary ⇒ φ(x) ∈ S1.

We can now define the spectrum properties of self-adjoint and unitary elements.
In the following, if x ∈ A and x ∈ B ⊂ A be a subalgebra of A, then we define
σB(x) to be the spectrum of x only consider B.

Proposition 4.17. Let A be a unital C∗-algebra, and let x ∈ A. Then we have:

(1) x Self-adjoint ⇒ σA(x) ⊂ R;
(2) x unitary ⇒ σA(x) ⊂ S1.
(3) If B is a unital C∗-subalgebra of A and x ∈ B is normal, then σA(x) =

σB(x).

Proof. Assume that x ∈ A is normal. Then let:

A(x) := {p (x, x∗) : p is a polynomial over C in 2-variables }

where we take norm closure in A. This is called the C∗-subalgebra generated by
x, in particular A(x) is a commutative, unital, C∗-subalgebra of A. Then we
have by Theorem 4.10, σA(x)(x) =

{
φ(x) : φ ∈ ΦA(x)

}
. As A(x) ⊆ A we have

σA(x) ⊆ σA(x)(x). By Corollary 4.16 we have that

{
φ(x) : φ ∈ ΦA(x)

}
⊂

{
R if x is self-adjoint

S1 if x is unitary.

Hence (1) and (2) is proven.
For (3), we firstly assume that x is self-adjoint. Then as σ(x) ⊆ R, we have

σ(x) = ∂σ(x). We also have ∂B(x) ⊆ ∂A(x) (why?) so

σB(x) = ∂σB(x) ⊆ ∂σA(x) ⊆ σA(x) ⊆ σB(x).
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Hence we have σA(x) = σB(x). Now suppose x is normal, we have for any y ∈ A,
y ∈ G(A) if and only if y∗ ∈ G(A). As a result

λ− x ∈ G(A) ⇔ λ− x, λ̄− x∗ ∈ G(A)

⇔ η :=
(
λ̄− x∗

)
(λ− x) ∈ G(A)

⇔ η ∈ G(B) (as η is self-adjoint)

⇔ λ− x, λ̄− x∗ ∈ G(B)

⇔ λ− x ∈ G(B)

where we have used the fact that, two commutative elements x, y is invertible if
and only if xy is invertible (why?). □

We also have the square root of a positive element of A:

Definition 4.18. x ∈ A is positive if x is self-adjoint with non-negative spectrums.
In this case we write x ≥ 0.

Proposition 4.19. Let A be an unital C∗-algebra (not necessarily commutative).
If x is positive, then there exists a unique positive y ∈ A such that y2 = x, which is
called the positive square root of x. We write y = x1/2.

Proof. For existence, let B be any commutative, unital C∗-subalgebra of A such
that x ∈ B. By the Commutative Gelfand-Naimark Theorem, there exists a com-
pact Hausdorff space K and θ : C(K) → B which is an isometric ∗-isomorphism.
Let f = θ−1(x), which is a function on K. Then since x is self-adjoint so is f , and
we have

f(K) = σC(K)(f) = σB(x) = σA(x) ⊂ [0,∞),

hence f has an unique positive square root
√
f := g. Let y = θ (g). Then since g is

R-valued, it is self-adjoint and so is y. Moreover again we have:

σA(y) = σC(K) (g) =
√
f(K) ⊂ [0,∞).

So y is positive. Also, y2 = θ
(
g2
)
= θ(f) = x, we have existence.

For the uniqueness, if z ∈ B, z ≥ 0 such that z2 = x, let h = θ−1(z). Then
h ≥ 0 and h2 = f = g2. So by uniqueness of positive square root in R, h = g.
Hence y = z, and the uniqueness in B is obtained.

Consider the general case in A. If y, z ∈ A are positive and y2 = z2 = x, then
yx = y3 = xy and zx = z3 = xz. Set

B1 = {p (x, x∗, y, y∗) : p is a polynomial in 4 variables},

and

B2 = {p (x, x∗, z, z∗) : p is a polynomial in 4 variables},
which is the C∗-subalgebra of A generated by x, y and the C∗-subalgebra of A
generated by x, z, respectively. B1 and B2 are both unital and commutative.

Let B = B1 ∩ B2, which is a commutative, unital C∗-subalgebra that contains
x. Hence there exists an unique square root k of x in B. By uniqueness in B1 and
B2 we get y = k = z. So we have uniqueness in A. □

Theorem 4.20. (Polar Decomposition of Invertible Operators) Let T ∈ B(H) be
invertible. Then there exist an unique unitary operator U and an unique positive
operator R such that T = RU .
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Proof. Notice that TT ∗ is always positive and we define R =
√
TT ∗. As T is

invertible, R2 = TT ∗ is invertible so R is invertible. Set U = R−1T , then we have

U∗U = T ∗R−1R−1T = T ∗(T ∗)−1T−1T ∗ = I.

So existence follows. For uniqueness, let T = RU , then TT ∗ = R2 so by uniqueness
of square root, R is unique and hence U . □

4.3. Holomorphic Functional Calculus. Let p(x) be a polynomial on C. It is
known when A = B(X) for some Banach space X, we have the spectrum mapping
theorem:

Theorem 4.21. (Spectrum Mapping Theorem) For every T ∈ B(X) we have
σ(p(T )) = p(σ(T )). More generally, for any unital Banach algebra A and x ∈ A,
we have σ(p(x)) = p(σ(x)).

Proof. See Oxford Functional Analysis II note at https://courses.maths.ox.ac.
uk/course/view.php?id=5548, Theorem 5.7. □

This theorem seems intuitive in every sense and we can seek its generalization.
For example, we already know that

exp(T ) :=

∞∑
k=0

T k

k!

converges for every T ∈ B(X). Is it necessarily true that, exp(σ(T )) = σ(exp(T ))?
Can we define f(T ) for other, say, holomorphic functions f? Is it necessarily true
that, f(σ(T )) = σ(f(T )) then?

Let U be an open subset, we notice from Cauchy Integral formula, for any f
holomorphic on U , we have

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

where γ lies in U and z lies in the inside of γ. It is intuitive that, if we change
z into T we can define f(T ) via such “operator-valued” Cauchy integral formulas.
But we need some formal setup here.

Proposition 4.22. Let X be a Banach space and f : [a, b] → X be a continuous
function. Take any sequence of partition πn = {tni : a = tn0 < tn1 < · · · < tnN(πn) =

b} with vanishing mesh. Then the limit of Riemann sum

lim
n→∞

N(πn)∑
k=1

f(tnk−1)(t
n
k − tnk−1) =:

∫ b

a

f(t) dt ∈ X

is independent of (πn)n≥1. We call it the integral of f on [a, b].

It is routine to check this proposition.

Lemma 4.23. For any ϕ ∈ X∗, we have

ϕ

(∫ b

a

f(t) dt

)
=

∫ b

a

(ϕ ◦ f)(t) dt.

Exercise 4.24. Prove that∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥ dt.

https://courses.maths.ox.ac.uk/course/view.php?id=5548
https://courses.maths.ox.ac.uk/course/view.php?id=5548
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We need to give the notion of holomorphic function taking values inside Banach
spaces.

Definition 4.25. Let U ⊂ C be a domain, X be a normed space, and f : U → X
be a function. f is said to be holomorphic if the limit

lim
w→z

f(w)− f(z)

w − z

exists in X for any z ∈ U .

We immediately have

Lemma 4.26. Let f be holomorphic on U , then for any ϕ ∈ X∗, ϕ ◦ f : U → C is
a holomorphic function in usual sense.

Proof. By continuity of ϕ we have

lim
w→z

(ϕ ◦ f)(w)− (ϕ ◦ f)(z)
w − z

= lim
w→z

ϕ

(
f(w)− f(z)

w − z

)
= ϕ

(
lim
w→z

f(w)− f(z)

w − z

)
exists in C. □

Lemma 4.27. Let f be a bounded holomorphic function on C (i.e. an entire
function). Then f is constant

Proof. For any ϕ ∈ X∗ we must have ϕ ◦ f is bounded entire and hence constant.
Take any z ∈ C, we have ϕ(f(z)) = ϕ(f(0)) for any ϕ ∈ X∗. By a consequence of
Hahn-Banach theorem we see that f(z) = f(0). □

Definition 4.28. Let γ : [a, b] → C be a path (i.e. continuously differentiable
map). For any continuous function f : Im(γ) → C, we define∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt.

We have similar properties as in complex integrations, in particular the Cauchy
theorem holds.

Theorem 4.29. (Cauchy Theorem) Let U be a domain of C and γ be a closed path
in U such that the inside of γ all lies in U . Then∫

γ

f(z) dz = 0.

Proof. For any ϕ ∈ X∗ we have

ϕ

(∫
γ

f(z) dz

)
=

∫
γ

ϕ(f(z)) dz = 0

by the usual Cauchy theorem. By Hahn-Banach
∫
γ
f(z) dz = 0. □

For any rational function r = p/q for polynomials p and q and x ∈ A we de-
fine r(x) = p(x)(q(x))−1 whenever q(x) is invertible. We now apply the Cauchy’s
integral formula:
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Proposition 4.30. Let A be a commutative, unital Banach algebra, U ⊂ C be a
domain and x ∈ A. Let O(U) be the space of holomorphic functions on U . Suppose
K = σ(x) ⊂ U . Let γ be a closed path in U\K such that:

I(Γ, ω) =

{
0 if ω /∈ U

1 if ω ∈ K

where I is the winding number. Define Θx : O(U) → A by

Θx(f) :=
1

2πi

∫
γ

f(z)(z − x)−1 dz.

Then:

(1) Θx is well-defined, linear and continuous, where O(U) is equipped with the
supremum norm ∥f∥γ = supz∈γ |f(z)|;

(2) Θx(r) = r(x) for a rational function r without poles in U ;
(3) For any φ ∈ ΦA, we have φ(Θx(f)) = f(φ(x)), and

σ (Θx(f)) = f (σ(x)) = {f(λ) : λ ∈ σ(x)} .

Proof. (1) As z − x is invertible for any z ∈ γ, z → (z − x)−1 is continuous, we see
Θx is well-defined. Linearity follows easily. As z → ∥(z − x)−1∥ is also continuous
we see that it is bounded (say by Cγ) on γ, and hence

∥Θx(f)∥ ≤ Cγ

2π
∥f∥γℓ(γ),

continuity follows.
For (2), we check that Θx(1U ) = 1 = 1U (x) first:

Θx(1U ) =
1

2πi

∫
γ

1z∈U (z − x)−1 dz =
1

2πi

∫
γ

(z − x)−1 dz.

By Cauchy theorem and decomposing contour, the integral on γ agrees with the
integral on |z| = R for some R > ∥x∥, so we have

Θx(1U ) =
1

2πi

∫
|z|=R

(z − x)−1 dz =
1

2πi

∫
|z|=R

∞∑
k=0

xk

zk+1
dz

=
1

2πi

∞∑
k=0

xk
∫
|z|=R

1

zk+1
dz =

1

2πi

∞∑
k=0

2πiδ0,kx
k = x0 = 1.

Then for rational functions r ∈ O(U), we can write r(z) = p(z)/q(z), where p, q are
polynomials with q having no zeros in U . Hence we have: 0 /∈ {q(λ) : λ ∈ σ(x)} =
q (σ(x)) = σ(q(x)) by the classical spectrum mapping theorem.

As 0 /∈ σ(q(x)), q(x) is invertible for all x ∈ A, we can define r(x) = p(x)q(x)−1.
We only need to check r(x) = Θx(r). Notice that:

r(z)− r(x) = (p(z)q(x)− q(z)p(x))q(z)−1q(x)−1 = (z − x) s(z, x)q(z)−1q(x)−1︸ ︷︷ ︸
analytic in z on U

.
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The factorization holds as p(z)q(x)− q(z)p(x) = 0 for x = z. Hence

Θx(r) =
1

2πi

∫
γ

(r(z)− r(x) + r(x))(z − x)−1 dz

=
1

2πi

∫
γ

s(z, x)q(z)−1q(x)−1 dz + r(x)× 1

2πi

∫
γ

(z − x)−1 dz

= r(x).

The first integral is 0 by Cauchy theorem and the second one is 1 as Θx(1U ) = 1.
For (3) we firstly notice that for any φ ∈ ΦA we have φ((z−x)−1) = (z−φ(x))−1.

By the usual Cauchy integral formula we have

φ (Θx(f)) =
1

2πi

∫
γ

f(z)(z − φ(x))−1 dz = f(φ(x)).

Hence we have

σ (Θx(f)) = {φ (Θx(f)) : φ ∈ ΦA} = {f(φ(x)) : φ ∈ ΦA}
= {f(λ) : λ ∈ σ(x)} = f(σ(x)).

□

Now we can state the holomorphic functional calculus:

Theorem 4.31. (Holomorphic Functional Calculus) Let A be a commutative, uni-
tal Banach algebra. Let x ∈ A and let U ⊂ C be a domain with σA(x) ⊂ U .
There exists an unique unital, continuous homomorphism Θx : O(U) → A such
that Θx(idU ) = x. Moreover, φ (Θx(f)) = f(φ(x)) for all φ ∈ ΦA and f ∈ O(U),
and we have:

σ (Θx(f)) = {f(λ) : λ ∈ σ(x)} = f (σ(x)) .

Proof. We take the following lemma as granted:

Lemma 4.32. (Runge’s Approximation Theorem). Let K ⊂ C with K ̸= ∅ be
compact. Then for any f analytic on some open neighbourhood of K, and ε >
0, there exists a rational function r without poles in K such that ∥f − r∥K :=
supz∈K |f(z)− r(z)| < ε.

Consider all setups in Proposition 4.30. We just check Θx is a homomorphism:
Θx(fg) = fg(x) = f(x)g(x) = Θx(f)Θx(g) for any rational functions f, g without
pole in U . For general f, g we approximate f and g by rational functions and by
continuity of Θx we are done.

We now check the uniqueness. Suppose there is another Φx satisfies all properties
of Θx. Then Φx(p) = p(x) for all polynomials p, since if p(z) =

∑n
k=0 akz

k we have

Φx(p) =

n∑
k=0

akΦx(z
k) =

n∑
k=0

ak(Φx(z))
k =

n∑
k=0

akx
k = p(x).

If p has no roots in U , then 0 /∈ σ(p(x)) = {p(λ) : λ ∈ K}, and so

pΦx(1/p) = Φx(p)Φx(1/p) = Φx(p · (1/p)) = Φx(1) = 1,

thus Φx(1/p) = p(x)−1. Therefore, we have Φx(r) = r(x) for any rational
function r without pole in U . Hence by continuity and Runge’s approximation
theorem, we have that Φx = Θx. Other properties hold by approximate using
Runge’s approximation theorem. □
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4.4. Spectral Theorems. Now we are about to prove some spectral theorems.
Firstly we consider the C∗-algebra case:

Theorem 4.33. (Spectral Theorem for Commutative, Unital C∗-algebra). Let A
be a commutative, unital, C∗-subalgebra of B(H). Let K = ΦA, equipped with the
weak∗ topology. Then, there exists a unique resolution of the identity P of H over
K, such that ∫

K

T̂ dP = T for any T ∈ A

where T̂ is the Gelfand transform of T . More over, we have S ∈ B(H) commutes
with every T ∈ A if and only if S commutes with every P (E) for E ∈ BK .

Proof. We take the following theorem as granted:

Lemma 4.34. (Riesz representation theorem RRT) Let K be a compact, Hausdorff
space. Then the dual space of C(K) is the space of complex Borel measure over K,
equipped with the total variation norm

∥µ∥1 = sup

{
n∑

k=1

|µ(Ak)| : K =

n⋃
k=1

Ak and A1, A2, · · · , An are measurable

}
.

The identification map is

µ→
(
f →

∫
K

f dµ

)
∈ X∗.

By Theorem 4.14 we see that T → T̂ is a isometric ∗-isomorphism. In particular
consider the map mx,y : C(ΦA) ∋ T̂ → ⟨Tx, y⟩ for fixed x, y ∈ H. Clearly mx,y is
in dual of C(ΦA) and hence we have

mx,y(T̂ ) =

∫
K

T̂ dµx,y

for some complex Borel measure µx,y, by RRT. By considering the self-adjoint
element of A and then decompose everything in A into h+ik for self-adjoint element
h and k, we can deduce that µx,y = µy,x, compare the proof of the first lemma in
the proof of Theorem 4.14. Also, we have by linearity,∫
K

T̂ dµλx+y,z = ⟨T (λx+ y), z⟩ = λ⟨Tx, z⟩+ ⟨Ty, z⟩ = λ

∫
K

T̂ dµx,z +

∫
K

T̂ dµy,z

So we have µλx+y,z = λµx,z + µy,z. Similarly we have µx,λy+z = λµx,y + µx,z.
Hence, by Riesz representation theorem for Hilbert space, we have that there exists
a map Ψ : L∞(K) → B(H) such that for any f ∈ L∞(K),∫

K

f dµx,y = ⟨Ψ(f)(x), y⟩.

Notice that Φ is bounded with ∥Φ(f)∥ ≤ ∥f∥∞. Notice that

⟨x,Ψ(f)(y)⟩ = ⟨Ψ(f̄)(y), x⟩ =
∫
K

f̄ dµy,x =

∫
K

f dµx,y = ⟨Ψ(f)(x), y⟩

so we have Ψ(f)∗ = Ψ(f̄). Also we have

⟨Ψ(T̂ )x, y⟩ =
∫
K

T̂ dx,y = ⟨Tx, y⟩



SPECTRAL THEORY 15

for T ∈ A and hence Ψ(T̂ ) = T . For S, T ∈ A, we have∫
K

ŜT̂ dµx,y =

∫
K

ŜTdµx,y = ⟨S(Tx), y⟩ =
∫
K

Ŝ dµTx,y

and by the uniqueness in the RRT, we have T̂ dµx,y = dµT (x),µ. For f ∈ L∞(K),∫
K

fT̂ dµx,y =

∫
K

f dµT (x),y = ⟨Ψ(f)(T (x)), y⟩ = ⟨T (x),Ψ(f)∗(y)⟩

= ⟨T (x),Ψ(f̄)(y)⟩ =
∫
K

T̂ dµx,Ψ(f̄)(y).

So by the uniqueness of the RRT again, we have f dµx,y = dµx,Ψ(f̄)(y). Thus, for

f, g ∈ L∞(K), we have:

⟨Ψ(fg)(x), y⟩ =
∫
K

fg dµx,y =

∫
K

g dµx,Ψ(f̄)(y)

= ⟨Ψ(g)(x),Ψ(f̄)(y)⟩ = ⟨Ψ(f)Ψ(g)(x), y⟩.

Hence we have Ψ(fg) = Ψ(f) ◦Ψ(g).
Above all, Ψ is a continuous, unital, ∗-homomorphism. Set P (E) = Ψ(1E) for

any E ∈ BK . It is easy to check that P is a resolution of the identity of H over K.
We finally check that, for T ∈ A, we have:∫

K

T̂ dPx,y =

∫
K

T̂ dµx,y = ⟨Tx, y⟩.

By (2) of Proposition 3.4 we see that∫
K

T̂ dP = T

So we have the existence.
For the uniqueness, suppose

∫
K
T̂ dQ = T . Then

∫
K
T̂ dQx,y = ⟨Tx, y⟩, and

then Qx,y = Px,y by uniqueness of RRT. As ⟨Q(E)x, y⟩ = Qx,y(E) = Px,y(E) the
uniqueness follows.

For the last part we have we have

⟨(ST )x, y⟩ = ⟨T (x), S∗y⟩ =
∫
K

T̂ dPx,S∗y

⟨(TS)x, y⟩ =
∫
K

T̂ dPSx,y

⟨(S ◦ P (E))x, y⟩ = ⟨P (E)x, S∗(y)⟩ = Px,S∗y(E)

⟨(P (E) ◦ S)x, y⟩ = PSx,y(E).

So we have ST = TS for all T ∈ A if and only if Px,S∗y = PSx,y for all x, y ∈ H,
if and only if PSx,y(E) = Px,S∗y(E) for any E ∈ BK , if and only if S ◦ P (E) =
P (E) ◦ S. □

We also have the one for normal operators.

Theorem 4.35. (Spectral Theorem for Normal Operators). Let T ∈ B(H) be
normal. Then, there exists an unique resolution of the identity P of H over K :=
σ(T ) such that

T =

∫
σ(T )

λ dP.
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Moreover, for S ∈ B(H), ST = TS for any T ∈ B(H) if and only if S ◦ P (E) =
P (E) ◦ S for any E ∈ BK .

Proof. Consider A(T ) := A be the C∗-subalgebra generated by T . As T is normal
we have, by Proposition 4.17 (3), that σ(T ) = σA(T ). Then for φ ∈ ΦA we have

φ (p (T, T ∗)) = p (φ(T ), φ (T ∗)) = p(φ(T ), φ(T ))

So φ is uniquely determined by φ(T ) on A. Hence the Gelfand transform T̂ : ΦA →
σA(T ) is injective. By Theorem 4.10 the map is surjective and continuous, and
hence a homeomorphism (A continuous bijection between compact Hausdorff spaces
is a homeomorphism). Hence we may apply Theorem 4.33 with K = σA(T ) = σ(T )
to get the existence.

For uniqueness, assume that we have T =
∫
σ(T )

λ dQ, then for any polynomial
p,

p (T, T ∗) =

∫
K

p(λ, λ̄)dQ

and hence
∫
K
p(λ, λ̄)dQx,y is uniquely determined by Proposition 3.4. Now by

Stone Weiestrass we approximate everything by p and arrive at the uniqueness of∫
K
f(λ)dQx,y for any f ∈ C(K). As a result, Qx,y = Px,y so uniqueness follows.

The moreover part is clear. □

We can now define a very useful version of Borel functional calculus.

Proposition 4.36. (Borel Functional Calculus for Normal Operators) Let T ∈
B(H) be a normal operator on H, and let K = σ(T ) be the spectrum of T , and let
P be as in Theorem 4.35. Define:

L∞(K) → B(H) by f 7→ f(T ) ≡
∫
K

f dP

Then this map has the following properties:

(1) It is a unital, *-homomorphism, and id(T ) = T , where id is the identity
map on C (i.e.

∫
K

id dP = id is the identity on H );
(2) ∥f(T )∥ ≤ ∥f∥K for all f ∈ L∞(K), with equality if f ∈ C(K);
(3) For S ∈ B(H), we have ST = TS if and only if S ◦ f(T ) = f(T ) ◦S for all

f ∈ L∞(K);

(4) σ(f(T )) ⊆ f(K).

We have essentially already proven this proposition. We now look at a few
consequences:

Theorem 4.37. (Polar Decomposition of Normal Operator) Suppose T ∈ B(H) is
normal. Then there exists a unitary operator U and a positive operator R such that
T = RU .

Proof. Let K = σ(T ) and set

u(λ) =

{
λ/|λ| if λ ∈ K\{0}
1 if λ = 0 ∈ K.

Let r(λ) = |λ|. Then let U = u(T ) and R = r(T ). Then as ru = idK , we see that
RU = T . □
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Theorem 4.38. (Representation of Unitary Operators) Let U ∈ B(H) be a unitary
operator. Then, there exists a Hermitian operator Q such that U = eiQ.

Proof. Note that since U is unitary, we have K := σ(U) ⊂ S1. By taking a suitable
choice of logarithm, there exists f : S1 → R measurable and bounded such that

eif(t) = t for any t ∈ S1. Let Q = f(U). Since
∑N

n=0
(if(t))n

n! → t uniformly on S1

we have

eiQ := lim
N→∞

N∑
n=0

(iQ)n

n!
= lim

N→∞

N∑
n=)

(if(U))n

n!
= U

Thus U = eiQ. □


	1. Introduction
	2. Banach and C*-algebra
	3. Borel Functional Calculus
	4. Spectral Theory
	4.1. Spectrums
	4.2. Gelfand Transform
	4.3. Holomorphic Functional Calculus
	4.4. Spectral Theorems


