On a generalization of Bernoulli’s inequality

By L, LEINDLER in Szeged

At the Oberwolfach Conference on “Linear Operators and Approximation”
in August, 1971, H. S. SHAPIRO [1] presented a lecture on “Fourier multipliers whose
multiplier norm is an attained value”. On this occasion he mentioned that the element-
ary inequalities

(1) |1 4z* = 1—|—4Rez—|—|z|2—|—%|z|4,
¥ [1+2z* = 1+4Rez+8|z2+3|z]*

played an important role in the proof of his Theorem 2. (See Lemma 5 and 6 in [1].)
He also stated (see also [2]) that to prove an analogue of his result for p=2 inequalities
of the following type are needed:

(3) 14z = 1+pRez+a,lz|* +b,|z]7,
@) [14z]? = 1+pRez+4,z|*+B,|z]7,

where a,, b,, 4,, B, are positive constanis depending only on p.

The proof of (3) and (4) given in [2] does not seem to yield optimal values for
these positive constants. In connection with this fact H. S. SHAPIRO raised the problem
to find the best possible constants, i.e. the exact range of (a,, b,) such that (3) hol(fg,
and similarly for (4).

In the present paper we are going to give a proof of these inequalities which
exhibits best possible constants. In fact we prove:

Theorem. For any complex number z and for any p=2 the inequalities
) |1 +zP = 1+pRez+a,lz|®>+b,z|?,
() |[l1+z|P = 14+pRez+A4,|z|*+ B,|z|”
hold with any positive a,, b,, A,, B, satisfying

D
(7) 0<ap<73
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226 L. Lcindler

t—1’+pt—1-—a, t2

®) 0<b,=pm@p)= m1n -
(9) 1 < Bp < oo,
t+1)?—1—pt—B,t?
(10) Ml(p)=st1:to) ( ) tz] 1 §Ap<°°,
or
— 1P -
(7,) 0 << bp < I”'Z(P) = lllillut-;!—_Ll-,
t=2
® 00,2 1) = min S
=2
” S

2

P_1— pt— 2

= B, < oo,
t>0 P

These ranges of (a,, b,) and (4,, B,) are best possible.

Remarks. For some special p the exact values or good approximation of the
numbers p; and M; can be gotten by an easy computation.
For instance if p=2 then p;(2) = 1—a,, M;(2) = 1—-B,,

B (2) =1, p3(2)=1-b, and M,(2) =1-4,.
If p=4 and we choose a,==1 then u1(4)—§, and, for B,=3, M,(4)=8; i..

the constants % and 8 appearing in (1) and (2) are optimal.

The following estimates of the numbers u; and M, can be obtained by a standard
computation:

2 4a 2 2p—22p
p(p) = p ——s (P = ”2§3 us(p) = _P_T__p;
M, (p) = max 2”—1—p—B,M ; My(p)=2P—1—p—4,;
p 2 P
-2 p—1
PM(] (5]
m(p) = » 1 5
1—-27b
@)= 5 and ()=
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On a generalization of Bernoulli’s inequality 227

One more remark: inequality (5) can be slightly generalized as follows.
For any p=q =2 the inequality

(11) [1+z]? = 14+pRez+a,(g)|z|2+b,(q)|z|”

holds, where

0 < a,(g) < min(t_—ﬁ”—l—_pt_l

=2 1t

(=1 +pt—1—ay, (g
24 )

r

0 < b,(9) = min
122

The proof of these inequalities is the same as that of (7) and (8).
Such a generalization of (6) is impossible. This fact can be seen easily if p and
q are integers greater than two and z is a real number tending to zero.

Proof of (5). Denote z = x+iy and r=|z|. For the sake of brevity we write
a for a, and b for b,,.
In the first step we fix p, g, and r. Then we have to prove the inequality

r
(12 (142x41%)2 = 1+px+ar+br?

for all x lying in [—r, #] with positive ¢ and b. Put R = ;— A+r?), C = 1+ar?+bre,

2
2

fx) = 2%(R—|—x) and g(x) = px+C.

Drawing the graphs of these functions it is easy to see that inequality (12) will be
satisfied if the graph of y=g(x) lies under the graph of y =f(x) on theinterval [—r, r].
We obtain the best possible result in respect to a and b if y=g(x) is tangent to the
graph of y=f(x) inside of [—r, r] or, when this is not the case, if y=g(x) passes
through the point P(—r, f(—r)). (See Fig.1 and Fig. 2.)

y=f(x) y=f (%)

7

7=g(x) /y=g(x)
P(Xo,)’o)
/ Pl-r f(-r)

- r (£2) -r T(>2)
Fig. 1 Fig. 2

5%
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228 L. Leindler

In the first case our task reduces to.[ind the point P(x,, yo) on the graph f(x)
at which f"(xq)=p,

In order to find P(xy, yy) we calculate the derivative of f(x) and solve the
equation

r_y r_y
S =p2> R+x)>  =p.

2

Thus we getl xo = —% and this x, lies in [—r, r] if r=2.

In this case, i.e. if =2, we oblain the best possible constants @ and b if f(xy)=
=g(xo), .e. il

f —ﬁ w ] e p ——ﬁ +14ar*+br = —i
2= P72 ! ikl

holds. Hence we obtain ithe following conditions on a and b:

p—2a

0<a<% and 0<b§F.
If r=2 we have the following equation as a condition on ¢ and b;
S=r) = (-1 =p(—r)+1+ar* +br? = g(—r).

Hence we get

0 <a <wu; = minu,(¥) = min

f

(r—=1+pr—1 _p
I‘Z

rz2 r=2 2
and
. . (=D +pr—1—ar? —2a
0<b§u2=m1nu2(r)zmm( ) pp =2 - -
r=2 r=2 r 217

It is easy to see that u, and u, are positive. In fact, u, (r)z% for any r=2 and

~ for p=2
ul(r)»] for p=2 as  p->oo,

2 2
. ur2—ar®  u—a
Similarly, u, (r) = = =

> 0 for any r=2; furthermore

rp rP_Z
1 for p=>2
u,(r) - 1—a for p=2 as r — oo,
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On a generalization of Bernoulli’s inequality 229

To complete the proof of (5) we have only to show that uy = E. To verify

this we compute ?
@) =r*[(p(r— 1P +p)r*—2r((r— 1) +pr—1)].
Let 1(r) = (p(r—1)P~ 1 +p)r—2((r—1)?+pr—1). Now £(2)=0 and
K@) =p[(p=0 =1 +(p-De—1r"'-1]=0
for all r=2; thus #(¥)=0, which implies that u;(r)=0, i.e. u,(r) is an increasing

function, hence u; = minuy (¥) = u,;(2) = % in accordance with our statement.
r=2

Setting u; (p)=u, and collecting our results the proof of (5) is complete.

Proof of (6). We use the same notations as before except that we write a
for A4, and b for B,. We distinguish the cases 0=r=1 and r>1. If r=1 then let
hi(r) = (*+1)P—(1—r)P—2rp. Since #,(0)=0 and h7(0)=0, furthermore A7(r)=0
for all 0=r=1, we have

(13) hi(=0 for all O0=r=1.

If r=1 let hy(r) = (r+1)P—(r—1)»—2rp. As before, since k,(1)=0, h5(1)=0 and
h5(r)=0 for all r=1, we have

(14 h,(r)=0 for all rz=1.
(13) and (14) imply that

SO =) _ Dy =|r—1] _
(15) 2r - 2r =r
for all ¥=0,

By (15) it is evident that inequality (6) is satisfied if g(+)=f(r) and we obtain
the optimal constants if g (r)=/(r).

Hence we get the following condition on « and b:

1+ pr+ar? +br? = (r+1)2.

It is easy 1o see that b must be greater than 1, and if b is fixed then the best possible
value of a is
I R )
azsup(r—l—l) 2pr br .
r=0 ¥

To complete the proof of (6) we have only to prove that sup v(r)< o, where
r=0

r+1)? —1— pr—br?
v(r)=( ) 2 p .
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230 L. Leindler: On. a generalization of Bernoulli’s inequality

In fact, since b=>1,
—o for p=>2

o(r) ~ {l—b for p= 2} as I

_If_(ﬁ:,ll for p=> 2
o(r) ~ 2 as r—0,
1—-b for p=2

and

and these statements imply the desired conclusion.

The proof of (6) is complete.

Inequalities (5) and (6) with (7°), (8"), (9") and (10") can be proved similarly,
and therefore these proofs are omitted.
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