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1.

(a) [15 marks|] Let R be a commutative ring.

(i) Show that if R is an integral domain with the ACCP then R is a factorisa-
tion domain.

(ii) We say that = € R is irreducible if (x) is maximal amongst proper principal
ideals. State which of the following elements are irreducible in the given
rings and briefly justify your answers:

34+2V2in Z[V2]; 25in Zip; 2 in Z[V=5].

(iii) Show that if R is a PID then every non-unit in R has an irreducible factor.
(iv) Show that R is a field if and only if 0 is irreducible.
(b) [10 marks] Let Z be the set of a € C for which there is a monic polynomial
p € Z[X] such that p(a) = 0.
(i) Show that a € Z if and only if the Z-module Z[a] is finitely generated.
(ii) Hence show that Z is a subring of C.

[Hint: you may assume that a submodule of a finitely generated module
over a PID is also finitely generated.]

(iii) Show that Z does not contain any irreducible elements.
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[5 marks| B (a) (i) Write F for the set of elements in R* that have factorisation into irre-
ducibles so that all units and irreducible elements are in F. F is closed
under multiplication, by design and since R is an integral domain.

Were F not to be the whole of R* then there would be some zg € R* \ F.
Now create a chain iteratively: at step ¢ suppose we have x; € R* \ F.
Since z; is not irreducible and not a unit there is y;|x; with y; % 1 and
yi % x;; let z; € R* be such that x; = y;2;. If z; ~ x;, then z; ~ y;z; and
by cancellation 1 ~ y;, a contradiction. We conclude y;, z; % x;.

Since F is closed under multiplication we cannot have both y; and z; in F.
Let x;y1 € {vi, 2} such that z;11 ¢ F; by design x;y1|x; and x;q1 % ;.

This process produces a sequence ... |z2|zi|zo in which x; # x;41 for all
i € Ny contradicting the ACCP.
[4 marks| B (ii) 3 + 2v/2 has 3 — 2v/2 as a multiplicative inverse so is a unit in Z[v/2]

and hence not irreducible. 25 = 5 (mod 10) and (5) is maximal amongst
principal ideals in Zig and so irreducible. 2 is irreducible in Z[/=5], since
if 2 = (a+by/—5)(c+dv/—5) then 4 = (a®+5b%)(c*+5d?) and so b = d = 0,
and hence ¢ = £1 or ¢ = £1.

[3 marks] S (iii) (In the notes we prove that a PID has the ACCP so they may choose to
reproduce that and then apply the first part.) Let x € R\ U(R). Then (x)
is proper and so by Krull’s Theorem it is contained in a maximal ideal I.
Since R is a PID I = (d), and in particular (d) is maximal amongst proper
principal ideals so d is irreducible, and since z € I = (d) we have d|x as
required.

[3 marks] S (iv) If R is a field then the only ideals are {0} and R and so {0} is maximal
amongst principal ideals, and hence 0 is irreducible. On the other hand if
{0} is maximal amongst principal ideals and = € R* then {0} C (z) and so
by maximality (z) = R. Since R is commutative there must be y € R such
that zy = 1, and again since R is commutative it is a field.

[4 marks] N (b) (i) For the first part, ‘only if’ follows since 1,, a2, ... generate Z[a] as a Z-
module, but the degree d, say, monic p of which « is a root gives an inductive
way of writing o’ as a Z-linear combination of 1, ¢, ..., a% ! for i > d. For
“if’, suppose that pi,...,pr € Z[a] generate Z[a] as a Z-module. Then o
is a Z-linear combination of p1,...,pg for all d € Ny and in particular for
some d > max{degpi,...,degpr}. This gives a monic satisfied by a as
required.

[3 marks] N (i) Suppose that «, 3 € Z. Then there are generators p1,...,pr € Z[a] and
qi,---,qm € Z[B]. But Zja + f] and Z[aS] are both contained in the Z-
module generated by o’3? for i,j € Ng, which in turn is generated by the
finite set {pig; : 1 < i < k,1 < j < m}. Hence Zja + ] and Z[af] are
submodules of a finitely generated Z-module, and so themselves finitely
generated. Finally, Z[a] = Z[—a] and 1 is a root of X — 1 and so Z is a
ring by the subring test.

[3 marks] N (iii) If @ € Z then then « is a root of some monic p and so y/a is the root
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of the monic p(X?). Suppose that o € Z is irreducible. Then a % 1,
but since a = /a X y/a we have \/a ~ 1 or y/a ~ «a. If \/a ~ 1 then
a ~ 1, a contradiction; therefore \/a ~ «a. If \/a # 0 then /o ~ 1 again
a contradiction, so y/a = 0 and hence o = 0. By a iv we conclude that Z
is a field. However, 2 does not have an inverse in Z since if 2a = 1 and
p € Z[X] is a monic then 2%(a) = (2a)% + 2¢(20) for some ¢ € Z[X], so
p(a) # 0. Hence Z is not a field and it has no irreducible elements.
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2. (a) [7 marks] Show that if R is an integral domain with non-zero characteristic p
then p is prime and R is a vector space over F,, in such a way that multiplication
on R is bilinear.

(b) [4 marks] Show that if p is a prime and R is a ring of order p? then either
R = 7,2 or there is a polynomial ¢ € F,[X] such that R = F,[X]/(q).

(c) [6 marks] Let p =3 (mod 4) be prime.
(i) Show that if d € F, is not a square then d = —x? for some z € .
(ii) Show that if ¢ € F,[X] is a degree 2 irreducible polynomial then

Fp[X]/{q) = Fp[X]/(X? +1).

(d) [8 marks]
(i) Show that if R is a Euclidean domain then there is a prime p € R such
that if ¢ : R — R/(p) is the quotient map then U(q(R)) = q(U(R)).
[Hint: consider the minimal values of the Fuclidean function.]
(ii) Show that A := R[X,Y]/(X? +Y? +1) is not a Euclidean domain.
[You may assume that U(A) = R*, and also that the R-vector space A/(p)
is finite-dimensional for any non-zero prime p € A.]
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[7 marks| B

[4 marks] S

[3 marks] N

[3 marks] S

[5 marks] N

(a)

Let xg : Z — R be the unique homomorphism from the integers, and sup-
pose that R has characteristic p. If p = ab for a,b > 1 then O = xr(p) =
Xr(a)xr(b), and since R is an integral domain we conclude that xr(a) =0 or
Xgr(b) = 0; say the former. Then by definition a > p and so a = p and b = 1.
We conclude that p is prime.

The kernel of xr contains p and is an ideal in Z. Since Z is a PID it has the form
(N) for some N € Ny, but then N|p, whence N =1 or N =p. If N =1 then
1g = xr(1) = xr(0) = Or contradicting the non-triviality of R. We conclude
that N = p and the ring Z/(p) is the field F,, which is a field. By the First
Isomorphism Theorem there is then an injective ring homomorphism F, — R
which induces an [F-vector space structure on the additive group of R in such a
way that right multiplication is F-linear. Since multiplication is commutative,
it is F-bilinear.

The additive order of 1 must divide p?. It cannot be 1 since the ring is not
trivial. If it is p? then R = Zy2. The characteristic p case is what remains.
In this case R is a vector space over [F,, and for reasons of size must have a
basis of size 2. Take 1 € R which is non-zero and extend this to an [Fj-basis
by some element z. Let a,b € F, be such that 2?2 = ax + b, then the map
F,[X] = R; f — f(x) is a surjective ring homomorphism. The kernel contains
(X? —aX —b), and since F,[X]/(X? — aX — b) is 2-dimensional over F,, R is
2-dimensional, and the given homomorphism is F,-linear.

(i) The map F), — Fy;z z? is a homomorphism of the multiplicative group,
and its image has index at most 2 since degree 2 polynomials over an
integral domain have at most 2 roots, and at least 2 since —1 is not a
square modulo p for congruence reasons. Since cosets partition a group, if
@ are the quadratic residues in F) then —@ is the set of non-residues as
required.

(ii) Since ¢ is a quadratic there are a,b,c € F), with a # 0 such that ¢(X) =
aX? + bX + ¢ by completing the square (since p is odd) ¢(X) = a((X —
b/2a)? + A) for A = ¢ — b?/4a®. Since ¢ is irreducible it has no root
so —A is not a square, so by c(i) we have A = d? for d # 0. Hence
q(X) = ad*((X/d —b/2ad)? +1). Dilating ideals by a unit does not change
them so the map F,[X]/(g) — F,[X]/(X% + 1)f — f(dX + b/2ad) is an
isomorphism.

(i) Let f be a Euclidean function on R and p € R have f(p) minimal over
all nonzero non-units. Then if z € R* \ U(R), then either p|x or there is
r € R* with z = bp+r and f(r) < f(p). By minimality of f(p) we have
r € U(R) and hence x + (p) € U(q(R)). It follows that U(q(R)) N q(R* \
U(R))) € q(U(R)), and hence U(q(R)) C q(U(R)). Units remain units
under quotienting which is the other direction.
Finally, p is prime, because it is not a unit, and if p|zy and p [z then by
the above p|(bp + 1)y for r € U(R), but then p|ry|y as required.
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[3 marks] N (ii) Let p be as in d(i). Then A/(p) contains elements x,y with 22 +y>+1 = 0.
It is also an integral domain that is finite dimensional over R and so A/(p)
is a field and hence A/(p) = U(A/(p)) U{0} = R*U{0} = R, but there are
no X,Y € R with X2 +Y?2+4+1=0.
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3.

(a) [15 marks]
(i) Show that if R is a Euclidean domain then every A € M,, ,,(R) is equivalent
by elementary operations to a diagonal matrix.

(ii) Show that if R is a commutative ring and A, B € M, »,(R) are both in
Smith Normal Form with A equivalent to B then A; ; is an associate of B; ;
for all 4. State clearly any results you use.

(iii) Show that if R = M(F) for a field F and R™ = R™ as R-modules then
n=m.
(b) [10 marks] Let U, V and W be vector spaces over F and let R := Endp(V).

(i) Show that the map R x L(U,V) — L(U,V) which sends (¢,v) to ¢ o9
is well-defined and gives the commutative group L(U, V) of F-linear maps
U — V the structure of an R-module.

(ii) Write down an R-linear isomorphism « : L(U, V)®L(W,V) — L(U®W, V).
(iii) Show that if V' = F[X] considered as an F-vector space, then V' is F-linearly
isomorphic to V@ V.

(iv) Deduce that R = R? as R-modules.
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[8 marks| B (a) (i) Let Ay be those matrices B ~¢ A with the additional property that when-
ever 1 < k and j # i, or j < k and i # j, we have B; ; = 0. We shall show
by induction that Ay is non-empty for & < min{m,n}; A; contains A and
so0 is certainly non-empty.

Let f be a Euclidean function for R, and suppose that A, # 0 and k <
min{m,n}. Let B € Aj be a matrix with f(Bj ) minimal. First we show
that By x| By, for all i > k: if not, there is some i > k with By ; = ¢By +r
with f(r) < f(By) and we apply the elementary operations ¢; — ¢; — ckq
and ¢ <> ¢ to get a matrix B’ € Ay with B; , = By; — ¢By = r, but
f(By. ) = f(r) < f(Bgy) which contradicts the minimality in our choice
of B. Similarly, but with row operations in place of column operations,
Bk,k’Bi,k for all i > k.

For k < i < 'm let g; be such that By ; = By, 1q;. Apply elementary column

operations ¢jy1 — Cri1 — CkQki1s - -+, Cm = Cm — CLGm tO get a matrix B'.
For k < i < n let p; be such that B;; = p; By . Apply elementary row
operations 7541 F> Tkt1 — Pkt1Tk, - - > Tn = Tn — DnTk t0 B’ to get a matrix

B”. Then B" ~¢ B’ ~¢ B ~¢ A and B” € Ajy1. The inductive step is
complete. It follows that Apinfm,ny # (); any B in this set is diagonal and
equivalent to A.

[4 marks] S (ii) This is on problem sheet 4. I am expecting them to quote the uniqueness
theorem and the fact that equivalent matrices produce isomorphic presen-
tations, so R /Im L4 = R™/Im Lp, and since both A and B are diagonal
with, say, entries ay,...,ax and by, ..., b (where k = min{n, m}) we have
ImLy = (a1) X -+ X {ag) x {0} x --- x {0} where there are m — k copies
of {0}. Moreover, ai|az|---|ax so (a1) D -+ D (ag) D (0) D --- D (0).
Similarly for Im Lp, and it follows by the uniqueness theorem that a; ~ b;
for all 4 as required.

[3 marks] S (iii) If R = M5(F) then R is F-linearly isomorphic to F4, and if R" is R-linearly
isomorphic to R™ then the underlying F-vector spaces are F-linearly iso-
morphic, and so F*" is F-linearly isomorphic to F*™ and hence 4n = 4m
and so n = m.

[3 marks] S (b) (i) The map is well-defined because the composition of linear maps is lin-
ear. The multiplicative identity in Endp(V') is the identity function and
so 1p.) = ¥; ¢ € Endp(V) is additive and so (¢.(¢ + 7)) (z) = ¢((x) +
m(x)) = ¢(¢(x)) + d(n(x)) = (¢.4)(x) + (¢.7)(x) for all x € V; ((¢ +
@) ) (@) = (0+¢") () = d(¢(2)) + ¢ (U(z)) = (¢-¥)(x) + (¢'.¢)(x) for
all z € V; and finally (¢po@').0p = (pod')orh = po (¢ o)) = ¢.(¢.1h) since

functional composition is associative.

[2 marks] S (ii) In the first case, the map o : L(U,V)@® L(W,V) = LU @ W, V); (¢,v¢) —
(u+ w+— ¢d(u) + P(w)) is a well-defined R-linear isomorphism.

[2 marks] N (iii) The map B : F[X] ® F[X] — F[X];p — p(X?) + ¢(X?)X is an F-linear
bijection.

[3 marks] N (iv) Let U = W =V in the isomorphism « and note that the map R — R?; ¢
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a~1(¢op) is well-defined and an R-linear bijection and the claim is proved.
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