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1. (a) [15 marks] Let R be a commutative ring.

(i) Show that if R is an integral domain with the ACCP then R is a factorisa-
tion domain.

(ii) We say that x ∈ R is irreducible if 〈x〉 is maximal amongst proper principal
ideals. State which of the following elements are irreducible in the given
rings and briefly justify your answers:

3 + 2
√

2 in Z[
√

2]; 25 in Z10; 2 in Z[
√
−5].

(iii) Show that if R is a PID then every non-unit in R has an irreducible factor.

(iv) Show that R is a field if and only if 0 is irreducible.

(b) [10 marks] Let Z be the set of α ∈ C for which there is a monic polynomial
p ∈ Z[X] such that p(α) = 0.

(i) Show that α ∈ Z if and only if the Z-module Z[α] is finitely generated.

(ii) Hence show that Z is a subring of C.
[Hint: you may assume that a submodule of a finitely generated module
over a PID is also finitely generated.]

(iii) Show that Z does not contain any irreducible elements.
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(a) (i)[5 marks] B Write F for the set of elements in R∗ that have factorisation into irre-
ducibles so that all units and irreducible elements are in F . F is closed
under multiplication, by design and since R is an integral domain.
Were F not to be the whole of R∗ then there would be some x0 ∈ R∗ \ F .
Now create a chain iteratively: at step i suppose we have xi ∈ R∗ \ F .
Since xi is not irreducible and not a unit there is yi|xi with yi 6∼ 1 and
yi 6∼ xi; let zi ∈ R∗ be such that xi = yizi. If zi ∼ xi, then zi ∼ yizi and
by cancellation 1 ∼ yi, a contradiction. We conclude yi, zi 6∼ xi.
Since F is closed under multiplication we cannot have both yi and zi in F .
Let xi+1 ∈ {yi, zi} such that xi+1 6∈ F ; by design xi+1|xi and xi+1 6∼ xi.
This process produces a sequence . . . |x2|x1|x0 in which xi 6∼ xi+1 for all
i ∈ N0 contradicting the ACCP.

(ii)[4 marks] B 3 + 2
√

2 has 3 − 2
√

2 as a multiplicative inverse so is a unit in Z[
√

2]
and hence not irreducible. 25 ≡ 5 (mod 10) and 〈5〉 is maximal amongst
principal ideals in Z10 and so irreducible. 2 is irreducible in Z[

√
−5], since

if 2 = (a+b
√
−5)(c+d

√
−5) then 4 = (a2+5b2)(c2+5d2) and so b = d = 0,

and hence a = ±1 or c = ±1.

(iii)[3 marks] S (In the notes we prove that a PID has the ACCP so they may choose to
reproduce that and then apply the first part.) Let x ∈ R \U(R). Then 〈x〉
is proper and so by Krull’s Theorem it is contained in a maximal ideal I.
Since R is a PID I = 〈d〉, and in particular 〈d〉 is maximal amongst proper
principal ideals so d is irreducible, and since x ∈ I = 〈d〉 we have d|x as
required.

(iv)[3 marks] S If R is a field then the only ideals are {0} and R and so {0} is maximal
amongst principal ideals, and hence 0 is irreducible. On the other hand if
{0} is maximal amongst principal ideals and x ∈ R∗ then {0} ( 〈x〉 and so
by maximality 〈x〉 = R. Since R is commutative there must be y ∈ R such
that xy = 1, and again since R is commutative it is a field.

(b) (i)[4 marks] N For the first part, ‘only if’ follows since 1, α, α2, . . . generate Z[α] as a Z-
module, but the degree d, say, monic p of which α is a root gives an inductive
way of writing αi as a Z-linear combination of 1, α, . . . , αd−1 for i > d. For
‘if’, suppose that p1, . . . , pk ∈ Z[α] generate Z[α] as a Z-module. Then αd

is a Z-linear combination of p1, . . . , pk for all d ∈ N0 and in particular for
some d > max{deg p1, . . . ,deg pk}. This gives a monic satisfied by α as
required.

(ii)[3 marks] N Suppose that α, β ∈ Z. Then there are generators p1, . . . , pk ∈ Z[α] and
q1, . . . , qm ∈ Z[β]. But Z[α + β] and Z[αβ] are both contained in the Z-
module generated by αiβj for i, j ∈ N0, which in turn is generated by the
finite set {piqj : 1 6 i 6 k, 1 6 j 6 m}. Hence Z[α + β] and Z[αβ] are
submodules of a finitely generated Z-module, and so themselves finitely
generated. Finally, Z[α] = Z[−α] and 1 is a root of X − 1 and so Z is a
ring by the subring test.

(iii)[3 marks] N If α ∈ Z then then α is a root of some monic p and so
√
α is the root
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of the monic p(X2). Suppose that α ∈ Z is irreducible. Then α 6∼ 1,
but since α =

√
α ×
√
α we have

√
α ∼ 1 or

√
α ∼ α. If

√
α ∼ 1 then

α ∼ 1, a contradiction; therefore
√
α ∼ α. If

√
α 6= 0 then

√
α ∼ 1 again

a contradiction, so
√
α = 0 and hence α = 0. By a iv we conclude that Z

is a field. However, 2 does not have an inverse in Z since if 2α = 1 and
p ∈ Z[X] is a monic then 2dp(α) = (2α)d + 2q(2α) for some q ∈ Z[X], so
p(α) 6= 0. Hence Z is not a field and it has no irreducible elements.
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2. (a) [7 marks] Show that if R is an integral domain with non-zero characteristic p
then p is prime and R is a vector space over Fp in such a way that multiplication
on R is bilinear.

(b) [4 marks] Show that if p is a prime and R is a ring of order p2 then either
R ∼= Zp2 or there is a polynomial q ∈ Fp[X] such that R ∼= Fp[X]/〈q〉.

(c) [6 marks] Let p ≡ 3 (mod 4) be prime.

(i) Show that if d ∈ Fp is not a square then d = −x2 for some x ∈ F∗p.
(ii) Show that if q ∈ Fp[X] is a degree 2 irreducible polynomial then

Fp[X]/〈q〉 ∼= Fp[X]/〈X2 + 1〉.

(d) [8 marks]

(i) Show that if R is a Euclidean domain then there is a prime p ∈ R such
that if q : R→ R/〈p〉 is the quotient map then U(q(R)) = q(U(R)).
[Hint: consider the minimal values of the Euclidean function.]

(ii) Show that A := R[X,Y ]/〈X2 + Y 2 + 1〉 is not a Euclidean domain.
[You may assume that U(A) = R∗, and also that the R-vector space A/〈p〉
is finite-dimensional for any non-zero prime p ∈ A.]
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(a)[7 marks] B Let χR : Z → R be the unique homomorphism from the integers, and sup-
pose that R has characteristic p. If p = ab for a, b > 1 then 0R = χR(p) =
χR(a)χR(b), and since R is an integral domain we conclude that χR(a) = 0 or
χR(b) = 0; say the former. Then by definition a > p and so a = p and b = 1.
We conclude that p is prime.

The kernel of χR contains p and is an ideal in Z. Since Z is a PID it has the form
〈N〉 for some N ∈ N0, but then N |p, whence N = 1 or N = p. If N = 1 then
1R = χR(1) = χR(0) = 0R contradicting the non-triviality of R. We conclude
that N = p and the ring Z/〈p〉 is the field Fp which is a field. By the First
Isomorphism Theorem there is then an injective ring homomorphism Fp → R
which induces an Fp-vector space structure on the additive group of R in such a
way that right multiplication is F-linear. Since multiplication is commutative,
it is F-bilinear.

(b)[4 marks] S The additive order of 1 must divide p2. It cannot be 1 since the ring is not
trivial. If it is p2 then R ∼= Zp2 . The characteristic p case is what remains.
In this case R is a vector space over Fp, and for reasons of size must have a
basis of size 2. Take 1 ∈ R which is non-zero and extend this to an Fp-basis
by some element x. Let a, b ∈ Fp be such that x2 = ax + b, then the map
Fp[X]→ R; f 7→ f(x) is a surjective ring homomorphism. The kernel contains
〈X2 − aX − b〉, and since Fp[X]/〈X2 − aX − b〉 is 2-dimensional over Fp, R is
2-dimensional, and the given homomorphism is Fp-linear.

(c) (i)[3 marks] N The map F∗p → F∗p;x 7→ x2 is a homomorphism of the multiplicative group,
and its image has index at most 2 since degree 2 polynomials over an
integral domain have at most 2 roots, and at least 2 since −1 is not a
square modulo p for congruence reasons. Since cosets partition a group, if
Q are the quadratic residues in F∗p then −Q is the set of non-residues as
required.

(ii)[3 marks] S Since q is a quadratic there are a, b, c ∈ Fp with a 6= 0 such that q(X) =
aX2 + bX + c by completing the square (since p is odd) q(X) = a((X −
b/2a)2 + ∆) for ∆ = c − b2/4a2. Since q is irreducible it has no root
so −∆ is not a square, so by c(i) we have ∆ = d2 for d 6= 0. Hence
q(X) = ad2((X/d− b/2ad)2 + 1). Dilating ideals by a unit does not change
them so the map Fp[X]/〈q〉 → Fp[X]/〈X2 + 1〉f 7→ f(dX + b/2ad) is an
isomorphism.

(d) (i)[5 marks] N Let f be a Euclidean function on R and p ∈ R have f(p) minimal over
all nonzero non-units. Then if x ∈ R∗ \ U(R), then either p|x or there is
r ∈ R∗ with x = bp + r and f(r) < f(p). By minimality of f(p) we have
r ∈ U(R) and hence x + 〈p〉 ∈ U(q(R)). It follows that U(q(R)) ∩ q(R∗ \
U(R))) ⊂ q(U(R)), and hence U(q(R)) ⊂ q(U(R)). Units remain units
under quotienting which is the other direction.
Finally, p is prime, because it is not a unit, and if p|xy and p 6 |x then by
the above p|(bp+ r)y for r ∈ U(R), but then p|ry|y as required.
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(ii)[3 marks] N Let p be as in d(i). Then A/〈p〉 contains elements x, y with x2 +y2 +1 = 0.
It is also an integral domain that is finite dimensional over R and so A/〈p〉
is a field and hence A/〈p〉 = U(A/〈p〉)∪ {0} = R∗ ∪ {0} = R, but there are
no X,Y ∈ R with X2 + Y 2 + 1 = 0.
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3. (a) [15 marks]

(i) Show that if R is a Euclidean domain then every A ∈Mn,m(R) is equivalent
by elementary operations to a diagonal matrix.

(ii) Show that if R is a commutative ring and A,B ∈ Mn,m(R) are both in
Smith Normal Form with A equivalent to B then Ai,i is an associate of Bi,i

for all i. State clearly any results you use.

(iii) Show that if R = M2(F) for a field F and Rn ∼= Rm as R-modules then
n = m.

(b) [10 marks] Let U , V and W be vector spaces over F and let R := EndF(V ).

(i) Show that the map R × L(U, V ) → L(U, V ) which sends (φ, ψ) to φ ◦ ψ
is well-defined and gives the commutative group L(U, V ) of F-linear maps
U → V the structure of an R-module.

(ii) Write down an R-linear isomorphism α : L(U, V )⊕L(W,V )→ L(U⊕W,V ).

(iii) Show that if V = F[X] considered as an F-vector space, then V is F-linearly
isomorphic to V ⊕ V .

(iv) Deduce that R ∼= R2 as R-modules.
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(a) (i)[8 marks] B Let Ak be those matrices B ∼E A with the additional property that when-
ever i < k and j 6= i, or j < k and i 6= j, we have Bi,j = 0. We shall show
by induction that Ak is non-empty for k 6 min{m,n}; A1 contains A and
so is certainly non-empty.
Let f be a Euclidean function for R, and suppose that Ak 6= ∅ and k <
min{m,n}. Let B ∈ Ak be a matrix with f(Bk,k) minimal. First we show
that Bk,k|Bk,i for all i > k: if not, there is some i > k with Bk,i = qBk,k +r
with f(r) < f(Bk,k) and we apply the elementary operations ci 7→ ci − ckq
and ck ↔ ci to get a matrix B′ ∈ Ak with B′k,k = Bk,i − qBk,k = r, but
f(B′k,k) = f(r) < f(Bk,k) which contradicts the minimality in our choice
of B. Similarly, but with row operations in place of column operations,
Bk,k|Bi,k for all i > k.
For k < i 6 m let qi be such that Bk,i = Bk,kqi. Apply elementary column
operations ck+1 7→ ck+1 − ckqk+1, . . . , cm 7→ cm − ckqm to get a matrix B′.
For k < i 6 n let pi be such that Bi,k = piBk,k. Apply elementary row
operations rk+1 7→ rk+1−pk+1rk, . . . , rn 7→ rn−pnrk to B′ to get a matrix
B′′. Then B′′ ∼E B′ ∼E B ∼E A and B′′ ∈ Ak+1. The inductive step is
complete. It follows that Amin{m,n} 6= ∅; any B in this set is diagonal and
equivalent to A.

(ii)[4 marks] S This is on problem sheet 4. I am expecting them to quote the uniqueness
theorem and the fact that equivalent matrices produce isomorphic presen-
tations, so Rm/ ImLA

∼= Rm/ ImLB, and since both A and B are diagonal
with, say, entries a1, . . . , ak and b1, . . . , bk (where k = min{n,m}) we have
ImLA = 〈a1〉 × · · · × 〈ak〉 × {0} × · · · × {0} where there are m − k copies
of {0}. Moreover, a1|a2| · · · |ak so 〈a1〉 ⊃ · · · ⊃ 〈ak〉 ⊃ 〈0〉 ⊃ · · · ⊃ 〈0〉.
Similarly for ImLB, and it follows by the uniqueness theorem that ai ∼ bi
for all i as required.

(iii)[3 marks] S If R = M2(F) then R is F-linearly isomorphic to F4, and if Rn is R-linearly
isomorphic to Rm then the underlying F-vector spaces are F-linearly iso-
morphic, and so F4n is F-linearly isomorphic to F4m and hence 4n = 4m
and so n = m.

(b) (i)[3 marks] S The map is well-defined because the composition of linear maps is lin-
ear. The multiplicative identity in EndF(V ) is the identity function and
so 1R.ψ = ψ; φ ∈ EndF(V ) is additive and so (φ.(ψ + π))(x) = φ(ψ(x) +
π(x)) = φ(ψ(x)) + φ(π(x)) = (φ.ψ)(x) + (φ.π)(x) for all x ∈ V ; ((φ +
φ′).ψ)(x) = (φ+φ′)(ψ(x)) = φ(ψ(x)) +φ′(ψ(x)) = (φ.ψ)(x) + (φ′.ψ)(x) for
all x ∈ V ; and finally (φ ◦φ′).ψ = (φ ◦φ′) ◦ψ = φ ◦ (φ′ ◦ψ) = φ.(φ′.ψ) since
functional composition is associative.

(ii)[2 marks] S In the first case, the map α : L(U, V )⊕ L(W,V )→ L(U ⊕W,V ); (φ, ψ) 7→
(u+ w 7→ φ(u) + ψ(w)) is a well-defined R-linear isomorphism.

(iii)[2 marks] N The map β : F[X] ⊕ F[X] → F[X]; p 7→ p(X2) + q(X2)X is an F-linear
bijection.

(iv)[3 marks] N Let U = W = V in the isomorphism α and note that the map R→ R2;φ 7→
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α−1(φ◦β) is well-defined and an R-linear bijection and the claim is proved.
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