Final Honour School of Mathematics Part A

A4 Integration Lecturer: Stuart White Checked by: Jan Obloj

14/03/2022

Do not turn this page until you are told that you may do so

- 1. Let *m* denote the Lebesgue measure on \mathbb{R} .
 - (a) [16 marks]
 - (i) Define the Lebesque outer measure m^* and what it means for $E \subseteq \mathbb{R}$ to be Lebesque measurable.

Solution:

$$m^*(E) = \inf \left\{ \sum_{n=1}^{\infty} m(I_n) : I_n \text{ are intervals and } E \subseteq \bigcup_{n=1}^{\infty} I_n \right\},$$

where $m(I_n) = b_n - a_n$ when I_n has end points $a_n < b_n$ (details about how to assign lengths to intervals not required). E is Lebesgue measurable iff

$$m^*(A) = m^*(A \cap E) + m^*(A \setminus E)$$

for all $A \subseteq \mathbb{R}$. B 3

(ii) Show that for any subsets E_1, E_2, \ldots of \mathbb{R} ,

$$m^*\left(\bigcup_{n=1}^{\infty} E_n\right) \leqslant \sum_{n=1}^{\infty} m^*(E_n).$$

Solution: Let $\epsilon > 0$ and for each n find intervals $(I_{n,r})$ such that $E_n \subset \bigcup_{r=1}^{\infty} I_{r,n}$ and $\sum_{k=1}^{\infty}$

$$\sum_{n=1}^{\infty} m(I_{n,r}) < m^*(E_n) + 2^{-n}\epsilon.$$

Then $\bigcup_{n=1}^{\infty} E_n \subseteq \bigcup_{n,r=1}^{\infty} I_{n,r}$ so that

$$m^*(\bigcup_{n=1}^{\infty} E_n) \leqslant \sum_{r,n=1}^{\infty} m(I_{n,r}) < \sum_{n=1}^{\infty} m^*(E_n) + \epsilon.$$

Since $\epsilon > 0$ was arbitrary, $m^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} m^*(E_n)$. S 5 This is an exercise and has appeared on relatively recent exams

(iii) Let $F_1 \supseteq F_2 \supseteq \cdots$ be Lebesgue measurable sets with $m(F_1) < \infty$. Use countable additivity to show that

$$m\left(\bigcap_{n=1}^{\infty}F_n\right) = \lim_{n\to\infty}m(F_n).$$

Solution: Set $A_n = F_n \setminus F_{n+1}$ so that A_n are disjoint and $\bigcup_{n=1}^{\infty} A_n = F_1 \setminus [A_n]$ $\bigcap_{n=1}^{\infty} F_n$. Then by countable additivity

$$m(F_1 \setminus \bigcap_{n=1}^{\infty} F_n) = \sum_{n=1}^{\infty} (m(F_n \setminus F_{n+1})).$$

Also (finite) addivity gives $m(F_1) = m(F_1 \setminus \bigcap_{n=1}^{\infty} F_n) + m(\bigcap_{n=1}^{\infty} F_n)$ and $m(F_{n+1}) + m(F_n \setminus F_{n+1}) = m(F_n)$. So

$$\sum_{n=1}^{\infty} (m(F_n) - m(F_{n+1})) = m(F_1) - \lim_{n+1}^{\infty} m(F_n).$$

Since $m(F_1) < \infty$, the result follows.

S 5 This solution argues directly from countable additivity. I would expect many students to first prove the bookwork result $m(\bigcup_{n=1}^{\infty} E_n) = \lim m(E_n)$ when $E_1 \subseteq E_2 \subseteq \ldots$ and then set $E_n = F_1 \setminus F_n$.

(iv) Let $(E_n)_{n=1}^{\infty}$ be a sequence of Lebesgue measurable sets with $\sum_{n=1}^{\infty} m(E_n) < \infty$ and set $E = \bigcap_{n=1}^{\infty} \bigcup_{r \ge n} E_r$. Show that m(E) = 0.

Solution: We note that $m(\bigcup_{n=1}^{\infty} E_n) \leq \sum_n m(E_n) < \infty$ (using (ii)). Hence we can use (iii) to obtain

$$m(E) = \lim_{n} m(\bigcup_{r \ge n} E_r) \le \lim_{n} \sum_{r \ge n} m(E_r) = 0.$$

S 5 Unseen.

- (b) [9 marks] Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions from [0, 1] to \mathbb{R} .
 - (i) Show that for each $n \in \mathbb{N}$, there exists $a_n \in \mathbb{R}$ with

$$m(\{x \in [0,1] : |f_n(x)| > a_n/n\}) < 2^{-n}.$$

Solution: Fix $n \in \mathbb{N}$, and let $F_r = \{x \in [0,1] : |f_n(x)| > r/n\}$. Since $F_1 \supset F_2 \supset \dots$ and $\bigcap_r F_r = \emptyset$, there exists some r with $m(F_r) < 2^{-n}$ (by (a)(iii)). Take $a_n = r$. **N** 4

(ii) Deduce that for almost all $x \in [0, 1]$,

$$\frac{f_n(x)}{a_n} \to 0$$
 as $n \to \infty$.

Solution: Let $E_n = \{x \in [0,1] : |f_n(x)| > a_n/n\}$ so that $\sum_n m(E_n) < \infty$. Therefore for $E = \bigcap_{n=1}^{\infty} \bigcup_{m \ge n} E_m$, part (a)(iv) gives m(E) = 0. If $x \notin E$, then there exists n such that $x \notin \bigcup_{m \ge n} E_m$, i.e.

$$\left|\frac{f_m(x)}{a_m}\right| \leqslant \frac{1}{m} \text{ for all } m \geqslant n.$$

Therefore $f_m(x)/a_m \to 0$ as $m \to \infty$ for $x \notin E$. N 5 Sourced from Stein and Shakarchi chapter 1.

2. (a) [5 marks] State Fubini's and Tonelli's theorems for a measurable function $f : \mathbb{R}^2 \to \mathbb{R}$.

Solution: Fubini: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be integrable. Then, for almost all $y, x \mapsto f(x, y)$ is integrable, and if F(y) is defined (for those y) by

$$F(y) = \int_{\mathbb{R}} f(x, y) dx$$

then F(y) is integrable and

$$\int_{\mathbb{R}^2} f(x,y) d(x,y) = \int_{\mathbb{R}} F(y) dy.$$

Similarly

$$\int_{\mathbb{R}^2} f(x,y) d(x,y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) dy \right) dx$$

Tonelli: Such a function is integrable on \mathbb{R}^2 if either of the repeated integrals

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| dx \right) dy \text{ or } \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| dy \right) dx$$

is finite (and hence Fubini's theorem applies to |f| and f). B 5

(b) [15 marks] Let a > 1.

(i) Show that the function $f(x, y) = e^{-xy}$ is integrable on $[0, \infty) \times [1, a]$.

Solution: Note $e^{-xy} \ge 0$ on this range. For any $1 \le y \le a$,

$$\int_0^\infty e^{-xy} dx = \lim_{n \to \infty} \int_0^n e^{-xy} dx = \lim_{n \to \infty} \left(\frac{e^{-ny}}{y} - \frac{1}{y} \right) = \frac{1}{y}$$

using the monotone convergence theorem, and the fundamental theorem of calculus. Then $ca = c\infty$

$$\int_{1}^{a} \int_{0}^{\infty} e^{-xy} dx dy = \log a$$

by the fundamental theorem of calculus. By Tonelli's theorem, e^{-xy} is integrable on the specified domain.

S 4 Note that the calculation of the integral as $\log a$ really belongs to the next subpart.

(ii) Show that

$$\int_0^\infty \frac{e^{-x} - e^{-ax}}{x} \mathrm{d}x = \log a.$$

Solution: By Tonelli's theorem

$$\log a = \int_0^\infty \int_1^a e^{-xy} dy dx = \int_0^\infty \frac{e^{-x} - e^{-ax}}{x} dx$$

where the second integral is calculated by the fundamental theorem of calculus. S ${\bf 3}$

(iii) Is the function $g(x,y) = e^{-xy} - ae^{-axy}$ integrable over $[0,1] \times [1,\infty)$? Justify your answer.

Solution: Firstly, for any $y \in [1, \infty)$

$$\int_0^1 (e^{-xy} - ae^{-axy})dx = \frac{e^{-ay} - e^{-y}}{y}$$

by the FTC. So

$$\int_{1}^{\infty} \int_{0}^{1} (e^{-xy} - ae^{-axy}) dx dy = \int_{1}^{\infty} \frac{e^{-ay} - e^{-y}}{y} dy$$

On the other hand, for $x \in (0, 1)$,

$$\int_{1}^{\infty} (e^{-xy} - ae^{-axy})dy = \lim_{n \to \infty} \int_{1}^{n} (e^{-xy} - ae^{-axy})dy$$
$$= \lim_{n \to \infty} \left(\frac{-e^{-nx} + e^{-anx}}{x} - \frac{-e^{-x} + e^{-ax}}{x}\right)$$
$$= \frac{e^{-x} - e^{-ax}}{x}$$

by the MCT (applied separately to each term), and the FTC. Thus

$$\int_0^1 \int_1^\infty (e^{-xy} - ae^{-axy}) dy dx = \int_0^1 \frac{e^{-x} - e^{-ax}}{x} dx$$

If g(x, y) is integrable on the specified domain, then

$$\int_{0}^{1} \frac{e^{-x} - e^{-ax}}{x} dx = \int_{1}^{\infty} \frac{e^{-ay} - e^{-y}}{y} dy$$

by Fubini's theorem. Replacing y by x in the right hand integral, this gives

$$\int_0^\infty \frac{e^{-x} - e^{-ax}}{x} dx = 0,$$

contradicting the previous part. Thus g is not integrable. N 8. This exercise is sourced from Priestley, where it's an omitted example.

(c) [5 marks] Let $f : [0,1] \to \mathbb{R}$ be measurable. Suppose that the function

$$g(x,y) = f(x) - f(y)$$

is integrable on $[0,1] \times [0,1]$. Must f be integrable on [0,1]? Justify your answer.

Solution: By Fubini, for almost all $y, x \mapsto |f(x) - f(y)|$ is integrable. Fix such a y_0 so

$$\int_0^1 |f(x) - f(y_0)| dx < \infty.$$

Since for all $x \in [0, 1]$, we have

$$|f(x)| \leq |f(x) - f(y_0)| + |f(y_0)|,$$

comparison gives $\int_0^1 |f(x)| < \infty$. Therefore f is integrable on [0, 1]. **N 5**. Not especially difficult, but different in style from problem sheets.

- 3. (a) [9 marks]
 - (i) Define a simple function $\phi : \mathbb{R} \to [0, \infty]$, and state an expression for the Lebesgue integral of ϕ .

Solution: A simple function is a measurable function which takes only finitely many values. Such a function ϕ can be written in the form $\phi = \sum_{i=1}^{n} \alpha_i \chi_{B_i}$ with $\alpha_i \ge 0$ and measureable sets B_i . Then $\int_{\mathbb{R}} \phi = \sum_{i=1}^{n} \alpha_i m(B_i)$. **B 2.** This appears as an opening question every so often, last in 2018.

(ii) Let $f : \mathbb{R} \to [0, \infty]$ be measurable. Explain how to define its Lebesgue integral $\int_{\mathbb{R}} f$.

$$\int_{\mathbb{R}} f = \sup\{\int_{\mathbb{R}} \phi : 0 \leqslant \phi \leqslant f, \ \phi \text{ simple}\}.$$

B 2 as above.

Solution:

(iii) Let $f : \mathbb{R} \to [-\infty, \infty]$ be measurable. What does it mean for f to be *Lebesgue integrable*, and in that case define $\int_{\mathbb{R}} f$.

Solution: Let $f^+(x) = \max(f(x), 0)$ and $f^-(x) = \max(-f(x), 0)$. f is integrable iff $\int_{\mathbb{R}} f^+ < \infty$ and $\int_{\mathbb{R}} f^- < \infty$. In this case we define $\int_{\mathbb{R}} f = \int_{\mathbb{R}} f^+ - \int_{\mathbb{R}} f^-$. **B** 1 as above

(iv) Suppose that $f, g : \mathbb{R} \to [-\infty, \infty]$ are Lebesgue integrable with $f(x) \leq g(x)$ for all x. Show that $\int_{\mathbb{R}} f \leq \int_{\mathbb{R}} g$.

Solution: Firstly assume that $0 \leq f \leq g$. If $\phi : \mathbb{R} \to [0, \infty]$ is simple and $\phi \leq f$, then $\phi \leq g$. Therefore $\sup\{\int_{\mathbb{R}} \phi : 0 \leq \phi \leq f, \phi \text{ simple}\} \leq \sup\{\int_{\mathbb{R}} \phi : 0 \leq \phi \leq g, \phi \text{ simple}\}$,and so

$$\int_{\mathbb{R}} f \leqslant \int_{\mathbb{R}} g$$

Now in general, we have $0 \leq f^+ \leq g^+$ so $\int_{\mathbb{R}} f^+ \leq \int_{\mathbb{R}} g^+$ and $0 \leq g^- \leq f^-$ so $\int_{\mathbb{R}} g^- \leq \int_{\mathbb{R}} f^-$. Assembling this gives $\int_{\mathbb{R}} f \leq \int_{\mathbb{R}} g$. **S 4** This sort of property was described verbally in lectures but only the result was recorded.

- (b) [9 marks] Determine whether the following measurable functions are Lebesgue integrable over the specified set. Justify your answers.
 - (i) $f(x) = \frac{\cos x}{x}$ over $(1, \infty)$.

$$\int_{n\pi}^{(n+1)\pi} \left| \frac{\cos x}{x} \right| \geqslant \frac{1}{(n+1)\pi} \int_{n\pi}^{n+1} \pi |\cos x| = \frac{2}{(n+1)\pi}$$

Since $\sum_{n=1}^{\infty} \frac{2}{(n+1)\pi} = \infty$, f is not integrable over $[\pi, \infty)$, by the baby MCT (and so not integrable over $(1, \infty)$ either).

S 3 The same example with \sin rather than \cos appears in the course.

(ii) $g(x) = \frac{\cos(1/x)}{x}$ over (0, 1).

Solution: We substitute using the monotonic bijection $h : (0,1) \to (1,\infty)$, h(x) = 1/x which has continuous derivative $h'(x) = -x^{-2}$. Then as the f from the previous subpart is not integrable on $(1,\infty)$, it follows that $(f \circ h) \cdot h'$ is not integrable on (0,1). But $f(h(x))h'(x) = -\frac{\cos(1/x)}{x} = -g(x)$. Thus g is not integrable.

S 3 We do similar substitutions on sheet 3.

(iii) $h(x) = \frac{\sin x}{e^x - 1}$ over $(0, \infty)$.

Solution: For $x \ge 1$, we have $\left|\frac{\sin x}{e^x - 1}\right| \le \frac{2}{e^x}$. We have $\int_1^n \frac{2}{e^x} = 2(1 - e^{-n}) \to 2$. Therefore by the baby MCT, and comparison g is integrable on $[1, \infty)$. Noting that $\lim_{x\to 0} f(x) = 1$ by L'Hopital, if we define g(0) = 1, g restricts to a continuous function on [0, 1], which is therefore bounded and integrable on this domain. Hence g is integrable on $[0, \infty)$. **S** 3

- (c) [7 marks] Write $\mathcal{L}^1(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is integrable}\}\$ and define $||f||_1 = \int_{\mathbb{R}} |f|$ for $f \in \mathcal{L}^1(\mathbb{R})$.
 - (i) Let $(f_n)_{n=1}^{\infty}$ and $(g_n)_{n=1}^{\infty}$ be sequences in $\mathcal{L}^1(\mathbb{R})$, and suppose that $f, g: \mathbb{R} \to \mathbb{R}$ are such that $f_n \to f$ and $g_n \to g$ almost everywhere, and that $g \in \mathcal{L}^1(\mathbb{R})$. Suppose that $|f_n| \leq g_n$ for all $n \in \mathbb{N}$ and $||g_n||_1 \to ||g||_1$. Show $f \in \mathcal{L}^1(\mathbb{R})$ and $\int_{\mathbb{R}} f_n \to \int_{\mathbb{R}} f$.

Solution: f is an a.e. limit of measurable functions so measurable. As $|f_n| \leq g_n$, we have $|f| \leq g$ a.e. and hence $f \in \mathcal{L}^1(\mathbb{R})$. We have $g_n \pm f_n \geq 0$ and $g_n \pm f_n \to g \pm f$ a.e. Applying Fatou:

$$\int (g \pm f) \leqslant \liminf \int (g_n \pm f_n)$$

As $g_n \ge 0$, and $||g_n||_1 \to ||g||_1$, we have $\int g_n \to \int g$. Therefore

$$\pm \int f \leqslant \liminf \int (\pm f_n)$$

i.e.

$$\int f \leqslant \liminf \int f_n \leqslant \limsup \int f_n \leqslant \int f$$

Therefore $\lim \int f_n = \int f$.

N 4 Potentially hard, but based on proof of the DCT so reworked bookwork in form too. This could be made easier by adding a hint to use Fatou

(ii) Show that $||f_n - f||_1 \to 0$.

Solution: We have

 $|f_n - f| \leq |f_n| + |f| \leq g_n + |f| \to g + |f|$

almost everywhere. As g + |f| is integrable, and $||g_n + |f|||_1 = \int (g_n + |f|) \rightarrow \int (g + |f|) = ||g + |f|||_1$, we can apply the previous part to $|f_n - f| \rightarrow 0$ a.e. Therefore

$$||f_n - f||_1 = \lim \int |f_n - f| = 0,$$

as required. **N 3**