
David Gale* 

This column was originally called The Problem Corner. 
Under the previous editor the title was changed to Mathe- 
matical Entertainments, the idea being to broaden its content 
to include, for example, contests, hzstorical notes, and the 
like. It is my intention, starting with this issue, to continue 
and even accelerate this trend. While problems and puzzles 
will still be welcome, there will also be emphasis on mathe- 
matical games, paradoxes, anecdotes, computer discoveries. 
In fact, the concept of an entertainment seems sufficiently 
vague to allow a wide variety of material, provided only that 
it should not require technical expertise in any particular 
area of mathematics. I hope readers of the Intelligencer will 
find this sort of program congenial. Needless to say the suc- 
cess of the endeavor will depend crucially on getting good 
contributions from you, the readers, which are herewith ea- 
gerly solicited. 

The following theorem-joke was contributed by 
Hendrik Lenstra 

"Perfect squares don't exist. Suppose that n is a perfect 
square. Look at the odd divisors of n. They all divide 
the largest of them, which is itself a square, say d 2. 
This shows that the odd divisors of n come in pairs a,b, 
where a �9 b = d 2. Only d is paired to itself. Therefore 
the number of odd divisors of n is odd. This implies 
that the sum of all divisors of n is also odd. In partic- 
ular, it is not 2n. Hence n is not perfect, a contradic- 
tion: perfect squares don't  exist." 

Get it? 
Remark: It seems the joke works only in English. In 

other languages a square is just a square (the theorem, 
however, is international). 

Computer-Generated Mysteries 

The heading above describes a feature I would like to 
incorporate in these columns on a regular basis. Many 
mathematicians feel that the main impact of com- 
pu te r s  on mathemat ics  has  been  not  in solving 
problems, as one might have expected, but rather in 
posing them. The prime illustration is probably the re- 
cent activity in discrete dynamical systems stimulated 
by the celebrated computer experiments of Mitchell 
Feigenbaum. Perhaps explorations is a better descrip- 
tion of this work, the appropriate analogy being not 
with physics or biology but  with astronomy. The com- 
puter is the mathematician's telescope, which when 
used intelligently helps him/her to find out what is 
"out  there" in the mathematical universe (this whole 
development should be a source of satisfaction to the 
Platonists who have been saying all along that, like 
stars and galaxies, mathematical phenomena are dis- 
covered, not invented). 

Some quite recent work to be described in the next 
paragraphs gives another striking example of a set of 
phenomena that would probably never have been ob- 
served without the use of computers. 

The Strange and Surprising Saga of the 
Somos Sequences 

In investigating properties of elliptic theta functions, 
Michael Somos discovered an infinite sequence whose 
first 15 terms are 

1 , 1 , 1 , 1 , 1 , 1 , 3 , 5 , 9 , 2 3 ,  
75, 421, 1103, 5047, 41783. 

The sequence is defined by a z = 1 for 0 ~ i ~ 5 and 

*Column editor's address:  Depar tmen t  of Mathemat ics ,  Univers i ty  
of California, Berkeley, CA 94720 USA. 

a, = (an-la,-s + a,-2a,-4 + a2-3)/an-6 for n > 5. 
(1) 
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The surprising fact was that the recursion generates 
integers as far as the eye = computer = telescope can 
see. In fact, for this example a telescope is not re- 
quired. A good pair of binoculars will do. With a 
pocket scientific calculator one will easily, for example, 
verify that the next numerator above is divisible by 23 
so that a~s is again an integer. What's going on?* 

Upon seeing this phenomenon it occurred to a 
number of people to consider the simpler fourth-order 
recursion 

arian_ 4 = a n _ l a n _  3 + a2_2,  a 0 = a I = a 2 = a 3 = 1 
(2) 

Once again all entries turn out to be integers, but in 
this case the situation is manageable and several 
people have come up with proofs, the first one being 
given by Janice Malouf. We present here a variant due 
to George Bergman. First note that because of (2) 
every four consecutive terms of the sequence are pair- 
wise relatively prime. For suppose this is true up to an. 
Then a n would have a prime factor p in common with 
a,_l or an_ 3 if and only if p also divided an_ 2, contrary 
to the induction hypothesis. 

We now show inductively that if an_ 4 . . . . .  a n, 

. . . .  an+ 3 are integers (clearly true for n = 4), then so 
i s  an+ 4, and hence all a,. Writing an_ 3 = a, an_ 2 = b, 

an_ 1 = c we have anan_ 4 = ac + b 2, so a n divides ac + 

b 2. By the preceding paragraph we may apply (2) to 
the sequence modulo a n giving 

c 2 c 3 c  3 c 5 
a, b, c, O, a~n+4 =- (ac + b 2) =- O, 

a '  ab'  a 2' a3b 2 

(3) 

so a, divides ana,+ 4. [] 

Note that although the proof is very simple, it de- 
pends on the fortuitous fact that the factor ac + b 2 

turns up on the fourth iteration. We will return to this 
point. 

The same method works for the 5-term recursion 

anan_ 5 = an_ lan_4  + an_2an_3 . (4) 

Actually in all of these recursions one may put arbi- 
trary integers as coefficients of the terms a,_ ~a n_1 and 
still get integers, and this can be proved for the recur- 
sions (2) and (4).** 

The next bit of progress came when Dean Hickerson 
proved that the original Somos sequence gives in- 
tegers. In fact he showed something more general. In- 
stead of starting with six one's he considered the se- 

*Somos actually &scovered his sequences eight years ago but did 
not succeed in capturing the attention of the mathematical commu- 

mty untd the s u m m e r  of 1989. 
**If the integer coefficients are allowed to be negative, then it may 
happen  that some a. = 0, m which case we shall make the conven- 
tion that the sequence terminates at that point. 

quence starting with indeterminates a 0, a 1 . . . . .  a s. 
The recursion then generates rational functions a n = 
Pn/q, of these a, and the theorem is that the denomi- 
nators of these functions are always monomials with 
coefficient 1. This is of course clear for a 0 . . . . .  all but 
note that to compute a12 one must divide by a 6 = (asal 
+ a4a 2 + a~)/a o = p6/ao . One easily sees that hand 
computation of a7, a8, etc. quickly becomes unmanage- 
able. This is of course what symbolic manipulation 
programs are designed for and using M a c s y m a  Hick- 
erson found that as in (3) above P6 occurs as a factor of 
the numerator of a12 (which when reduced to lowest 
terms contains 194 terms!). Further M a c s y m a  calcula- 
tions are used to prove that P6 is prime to P7 . . . . .  P12 
and an inductive argument is used to complete the 
proof. (Richard Stanley has also solved this problem 
using similar methods.) 

But what have we learned? As Hickerson puts it, 
"The thing I dislike about my proof is that it doesn't 
explain why the result is true. It depends primarily on 
the fact that when you compute a12 there's an unex- 
pected cancellation. But why does this happen?" In- 
deed the proof, rather than illuminating the phenom- 
enon, makes it, if anything, more mysterious. I report 
this with some embarassment, since I have earlier as- 
serted in this same journal that a proof in mathematics 
is in some sense equivalent to an explanation. We now 
see that this clearly need not be the case. Perhaps, if 
and when we find the "right" proof the situation will 
become clarified, but must there necessarily be a right 
proof? One is reminded of the proof of the four-color 
theorem? One of the most interesting features of the 
Somos problem, it seems to me, is that it leads to this 
sort of speculation. 

Getting back to the question at hand, having found 
proofs for recursions of order 4, 5, 6, and empirical 
evidence for 7, it turns out that those of order 8 and 
above do not give integers. You will easily confirm 
with your pocket calculator, for example, that for the 
recursion of order 8, a17 is a fraction. Curiouser and 
curiouser. 

The next discovery is due to Raphael Robinson, who 
found that the integer property of recursions (1), (2), 
and (4) was (apparently) shared by an infinite family 
of recursions. For any k I> 6 start with k ones and then 
use the recursion 

anan_ k = a n _ l a n _ k +  1 + an_2an_k+2 o r  (5) 
anan_ k = a n _ l a n _ k + l  + (ln_2an_k+ 2 + an_3an_k+3 . (5 ' )  

The fact that one is now dealing with an infinite col- 
lection of sequences would seem to put the problem 
out of range of M a c s y m a - t y p e  proofs. 

At this point my pocket calculator convinced me 
that for any 0 < f < m < k the recursion 

a ,an_k  = x a n - e a n - k + e  + y a n - m a n - k + m  (6) 
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gives integers, generalizing (5). Further investigations 
again by Robinson lead to the following 

Conjecture: For any p, q, r < k the recursion 

anan_ k = Xan_pan_k+ p + y a n - q a n _ k + q  

+ Zan_ran_k+ r (7) 

generates integers if and only if p, q, r can be chosen so 
thatp  + q + r = k. 

(Robinson's evidence is only for the case x = y = z = 
1. The arbitrary x, y, z are my responsibility.) This 
would subsume (5') and (6). Namely (6) corresponds 
to choosingp = e ,q  = k -  m, r  = m -  f, andz  = 0 
and (5') corresponds to choosing p = 1, q = 2, r = 
k - 3 ,  x = y = z = l .  

The story is not over. Dana Scott set up a program 
for the simplest case k = 4 but forgot to square the 
term an_2, yet the recursion still gave integers! In fact, 
it turns out that recursion (2) can be generalized to 

ana,_ 4 = aPn_laqn_ 3 + ar_2 for any p, q, r > 0 (8) 

and the Bergman proof goes through as it does for re- 
cursion (4) with arbitrary exponents. On the other 
hand, one cannot choose arbitrary exponents and coef- 
ficients. In fact, the recursion a ,a ,_  4 = 2 a , _ l a , _  3 
+ a,_ 2 does not give integers (although if the right- 
hand side is a , - l a , _ 3  + ya,_2 it can be proved that the 
recursion gives integers for all y). 

Recursion (8) is interesting, because in all the other 
examples the right-hand side was homogeneous. Was 
this a red herring? Perhaps, but when we go to three- 
term sequences, we can no longer throw in arbitrary 
exponents. In fact, if one forgets to square the term 
an_ 3 in the original sequence (1), one gets fractions. 

Perhaps the simplest recursion of all has been dis- 
covered by Scott. Namely, for any k 

2 anan-k = a2_1 + . . .  + a,_k+ 1 (9) 

which seems to work for all k. Other "good" recur- 
sions seem to be 

arian_ k = arian_ 2 + . . .  + an_k+2an_k+l  (10) 

and for k odd 

anan_ k = a n _ l a n _ 2  q- an_3an_ 4 q- . . . 

q- an_k+2an_k+ 1. (11) 

These recursions break new ground, since the right- 
hand side may have any number of terms, whereas in 
previous examples three terms seemed to be the max- 
imum. For k = 4 the Bergman proof works for (9) and 
(11) but not for (10), which (for the moment) remains 
unsolved. 

I don ' t  want  to drag this out  indefinitely, for it 
seems new examples of Somos sequences are coming 
in faster than I can write them down. There is a whole 
area in which one uses recursions like (1) but starts 
with sequences other than all ones, e.g., ones and 
twos or ones and minus ones. Experiments indicate 
that sometimes one gets integers, other times not, but  
there seems to be no discernable pattern. On the posi- 
tive side, using the ideas of Hickerson, Gale, and Rob- 
inson have proved integrality for the sequences (5) 
(but not (5')). I strongly suspect that by the time this 
appears  in print much more will be known about  
Somos sequences. Perhaps the problem will even have 
been solved, but as of this writing the situation re- 
mains intriguingly mysterious. 
[Added in Proof: My suspicions seem to have been jus- 
tiffed. During the month since the original manuscript 
was submitted Ben Lotto, using the ideas of Hickerson 
bu t  no compute r  calculation, has shown that (9) 
always gives integers. The method doesn' t  seem to 
work however for (10) and (11), although Robinson, 
using an entirely different but elementary argument, 
has shown that (10) gives integers for k = 4, settling 
the question raised two paragraphs above. Also con- 
jecture (7) has been proved for k = 7, p = q = r = 1 
(using Mathematica rather than Macsyma this time). Fi- 
nally, Robinson has discovered a whole set of period- 
icity phenomena which occur when the values of the 
terms in the sequences are reduced modulo n. Period- 
icity has been proved for (2), (4) and for (10) with k = 
4 and (9) for k = 3, but remains unexplained (so far) 
otherwise.] 

Problems 

Derivatives eventually zero: Problem 91-1 by 
E. M. E. Wermuth (Jiilich, Germany) 

Let f be a C | function defined on some open interval 
(a,b) such that for every x in (a,b) there is an integer 
n(x) such that ftn(x))(x) = 0. Show that f is a polynomial. 
(For multidimensional versions of the problem and its 
history see MR90e:26040.) 
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A number of people have noted that the solution to 
Problem 89-7 by Andrew Lenard is incomplete. He 
concludes that a continuous strictly monotone func- 
tion from R to R is a homeomorphism but fails to 
show it is surjective. A correct proof can be given by 
noting that the fixed points of f are a closed set and 
then applying Lenard's method to each of the count- 
able sets of open intervals of non-fixed points. 

Is there a mathematics gene? 

The four-year-old niece of a mathematical logician was 
playing a game in which she was the conductor on a 
train and her  mothe r  was a passenger .  "Wait  a 
minute," said Nancy, "we have to get some paper to 
make tickets." "Oh",  said her mother, who had prob- 
ably had a long day, "Do we really need them? After 
all, it's only a pretend game with pretend tickets." 
"Oh  no, mommy,  you ' re  wrong ,"  replied Nancy, 
"They're pretend tickets, but it's a real game." 




