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Abstract. We show that any continuous flex that preserves the edge lengths of
a closed triangulated surface of any genus in three-space must flex in such a way
that the volume it bounds stays constant during the flex.

1. Introduction

Consider a triangulated polyhedral surface S in three-space. Regard the edges of S as rigid
bars, and regard the bars as joined at ideal universal joints at the vertices of S. There
are several examples when S is a mathematically exact (flexible) mechanism (see Connelly
4] for example). Indeed there are even simpler examples of such surfaces where S may
intersect itself and have various singularities. The simplest non-trivial example of this sort
is a self-intersecting surface due to R. Bricard [2], and there are many others, for example
Connelly [5].

For each such orientable singular surface S, it is possible to define the notion of the
(generalized, signed) volume bounded by S, vol(S). When S is a (triangulated) embedded
vol(S)| is indeed the volume of the bounded domain with § as boundary.

Suppose St, 0 <t < 1, represents a flex of the surface S so that Sy = S. In Connelly
3] it was conjectured that vol(S;) is constant. This was called the Bellows Conjecture in
the sense that it stated that there is no exact mathematical bellows.

Here we describe a proof of the Bellows Conjecture for any triangulated orientable
surface mapped into three-space. The ideas here were inspired by a proof by I. Sabitov in
7] in case the surface S is homeomorphic to a sphere. A proof for the general case of a

surface,
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manifold will appear in [8]. In fact, the proof here follows the same plan as in Sabitov [8].
The basic addition here is a way of streamlining a key induction step using the theory of
places instead of resultants. This has the advantage that the proofs are simpler and easier
to find, but the calculation of the polynomial in the main result is much less explicit.

We thank Victor Alexandrov, Richard Ehrenborg, and Moss Sweedler for their com-
ments and suggestions. We especially thank Ricky Pollack for finding a gap in an earlier
version of the main Corollary 1. We owe Stephen Chase a deep debt of gratitude for
suggesting the theory of places as the proper algebraic tool for the problem at hand.

2. An algebraic reformulation

Although we are primarily interested in surfaces in Euclidean three-space, it is useful to
think of things in the following way. Let p; = (x4, 9i,2), ¢ = 1,... be a finite number
of points, where the coordinates x;, y;, z; together are algebraically independent quantities
and generate a field K = Q(z1,v1, 21, T2, V2, 22,...). So each point p; belongs to K3,
1=1,....

Let M be a triangulation of an orientable combinatorial 2-dimensional manifold. In
other words M is a 2-dimensional simplicial complex such that the triangles (2-simplices)
adjacent to a given vertex form a cycle, and there is a consistent orientation to the triangles.

Let M — L3 be a map that associates to each vertex ¢ of M the point p; € L3, where
L is any field of characteristic not 2,3. We regard this map as a singular surface S. We
define the (generalized) volume of S as

1
VO].(S) = ‘é Z det[pi)pjapk]7

[i,7,kleM,

where the sum is taken over all positively oriented triangles [, j, k] of M (denoted by M, ).
(In our notation describing a matrix, we will treat vectors as columns).

Let L be any field that contains a ring R. Recall from algebra (see Lang [6]) that an
element x € L is defined to be integral over R if there are elementsa; € R,7=0,1,... ,n—1
such that

¥+ ap12” 1+ -+ a1z +ag = 0.

For any field L we say that the square of the edge length between p; and p; in LY is
(pi — ) = (@i — )% + (yi —y;)2 + (2 — 25)% ..., where p; = (T4, Yi, Ziy - - - )
The following is the main result of this paper.

Theorem 1. For any (singular) orientable surface S in L3, where L is any field of

characteristic not 2 or 3, 12vol(S) is integral over R, the ring generated by the squares of
the edge lengths of S.

Remark. In order to prove Theorem 1, it is enough to consider only the case when the field
L is the field K described above. We can simply specialize each independent coordinate
T;, Y; or z; to be the desired quantity in the field L. This provides a (ring) homomorphism



K — L, and the integral condition for vol(S) is preserved since, in the monic polynomial
above, each of the coefficients, as well as the volume itself, is in turn a polynomial (over
the integers) in the coordinates of the configuration.

Another advantage in taking the coordinates to be independent in the field K is
that the Theorem above provides a single polynomial for that particular configuration.
But then (using the homomorphism above) the same polynomial will be satisfied by the
volume for any other configuration, as long as the combinatorial type of the underlying
manifold remains the same, for any field. In particular, we can take L to be the real field.

Corollary 1. If S; is a flex of an orientable (singular) surface in R3, then vol(S;) is
constant.

Proof. The integrality condition and the remark above insures that there is a fixed monic
polynomial that is satisfied by the volume, and that the coefficients of this polynomial
are functions of the squared edge lengths and only depend on the combinatorial type of
the underlying manifold. Thus there are at most a finite number of values for vol(S;),
independent of ¢, 0 < ¢ < 1. Since vol(S;) is continuous in ¢, it must be constant.

3. Places

In order to streamline our tests for integrality, we repeat here some basic facts from Lang
6]. Suppose L and F are fields. Let ¢ : L — F U {oo} be a function such that for all
r,y € L,

() olz+y) =)+ oy)
(ii) o(zy) = p(z)p(y) and
(i) (1) =1,
where it is understood that for a € F (called a finite a) a £ 00 = 00 - 00 = % =00, == =0,
and if @ # 0, a - 0o = co. (The expressions %, 2,0+ 00,00 % 00 are not defined, and it is
also understood that (i) and (ii) only hold when the right hand side is defined.)
We call such a function a place for the field L. Our basic tool for integrality is the

following from Lang [6], page 12.

Lemma 1. An element z in a field L containing the ring R is integral over R if and only
if every place defined on L that is finite on R is finite on x.

Corollary 2. Suppose that z,y are both integral elements in a field containing a ring R.
Then x +y and x — y are integral over R as well.

4. The Cayley-Menger determinant

We need an algebraic condition on the set of distances between pairs of points that are
satisfied when they exist in LY, where L is any field and N = 3,4. In the following
vol[py,... ,pn] = (n_—llj“' det[p1,...,ps] is the (n — 1)-dimensional volume of the simplex



determined by pi,...,pn. It is clearly O when the vertices lie in an (n — 2)-dimensional
hyperplane. It is also clear, using the multilinearity of the determinant, that this definition
of volume agrees with the definition in Section 2. (In other words, the expression for volume
in Section 2 is invariant under translation of the vertices.)

Let p1,p2,...,pn € LN be n points and let di; = (pi—p;)% i1#3=12,...,nbe the
squared pair-wise distances. Then we define the Cayley-Menger determinant to be

r0 1 1 1 - 17
1 g d%z dza * d;n
1 d12 0 d23 ) d2n

CM[pl, - ,pn] — det 1 d%3 d%B 0 . dgn

1 &2, &2, - - 0l
The algebraic condition on distances is given by the following.

Lemma 2. (Cayley-Menger) Suppose, for a positive integer N, p1,p2,...,pn € LY are
n points, where L s any field of characteristic not 2,3,... ,n— 1. Then

CMipy,...,pn] = (=1)"2" Y ((n — D)) vol®[py, ... ,pnl,
where vol represents the oriented (n — 1)-dimensional volume.
This result can be found in Blumenthal [1], page 98.

Corollary 3. If p1,p2, ps, pa, ps € L for any field L not of characteristic 2 or 3, then

CM]p1,p2,p3,P4,P5] = 0.

Corollary 4. If p1,p2, p3,ps € L3 for any field L not of characteristic 2 or 3, then

CM[P17P2,p3aP4] = 2362 VOlz[plap27p3ap4] = 2(12V01[p1ap2’p37p4])2a

where vol is the 3-dimensional volume, and

(12 vol[p1, p2, p3,pa))? € Z]. .. ,dfj, o]

Proof. The coefficient of each term of CM|[p1, pa, p3, pa] is divisible by 2. (Each term in the
expansion of the determinant is repeated when all the matrix entries are reflected about
the main diagonal. These are distinct terms since if the entries in a term are reflected into
each other, one entry must be fixed along the main diagonal and be 0 since the matrix has
an odd number of rows and columns.)



5. The Key Lemmas

We need to control the behavior of a place when it is defined on various extensions of our

base ring R. Recall that in K, (p; —p;)? # 0 for all i # j, because of the independence of
their coordinates.

Lemma 3. Let p1,pa, ps, P4, Ps be a configuration of 5 points in K3. Define

s
Py "".""“‘ P3 o =di, ay=dy
a ’ 2 by = d? by = d2
of] D 1 13 2 24
P, o B, c1 = di ¢z = ds

Let ¢ be a place defined on the field generated by all dfj, 1#£7,1,7=1,2,3,4,5 such

b1 by
b = b = — = — =
p(b1) = p(b2) = ¢ <a1> ¢ (az) 00,
and p(d%), i = 1,2,3,4 and p(cy) are finite. Then ¢ (ﬁi;) # 0 and hence ¢ (%11) =
o) =oo

Proof. By Corollary 3 we have

that

[1 0 ay @ C1 d%5]
1 ai 0 Co @ d%5
det =0
1 @ Co 0 a9 d§5
[1 C1 @ ag 0 d4215]

L1 B s s g O

We divide each circled row and column by the circled entry in that row or column, b
or by. This gives the following:



det =0

i 2 2 |d]
—

Ity (bf})2> = 0, then all the matrix entries of Eg%fCM[pl,pz,p3,p4,p5] would have a
172

finite ¢ value and each entry in the circled row or column would be 0 except the circled
entry 1. Expanding the determinant in each of these rows or columns gives the determinant

0 1
det[1 0] =-1

so applying ¢ to both sides we get a contradiction to Corollary 3. Thus we get that
o (sik:) # 0

We now prepare for the analysis of the behavior of a place ¢ in a neighborhood of a point
in a surface S.

Lemma 4. Suppose that p1,...,pn,Pnt1 are n + 1 distinct points in K3 and that ¢ is

a place defined on the field generated by all the pair-wise non-zero distances dfj, 1 # 7,
,7=1,...,n,n+1, such that

‘P(d?,n“) and (p(dfﬂ-ﬂ) are finite fori=1,...,n (i 4+ 1 mod n).

Then for some i, o(dZ;,,) 1s finite, 1 =1,2,... ,n—2 .

Proof. Suppose ap(diz’iﬂ) =oofori=1,...,n—2. We will find a contradiction. We will
show inductively for i = 3,... ,n,

2 d%,i
e(di;) = ¢ 7 = 00.
1,i—1

This is clear for ¢ = 3. We assume it for ¢ and then we will show it for ¢ + 1. Apply
Lemma 3 to




_ 2 g2

a1 = dl,i—l az = di,i+1
_ 32 )

by =dj; by =di_1 ;41
— 2 12

€1 = dl,i+1 Cy = di—l,i

The conclusion of Lemma 3 is that

C d21~
2 =) = 2 %ﬂ‘ = W(d%,i+1) = 00.
by dl,i

This is the inductive step. But this is the desired contradiction since for ¢ = n, we get
p(d? ,,) = oo, which contradicts ¢(d? ,,) finite. Thus finally some ¢(d?,,,) is finite.

Remark. Notice that for n > 4, ¢(d2_, ;) and ¢(d3 ,,) are not mentioned as being forced
to be finite. This extra bit of generality comes for free in the proof. However, in the
application of Lemma 4, it is enough to know only that some (p(dii +o) is finite, where all
indices are reduced modulo n. For n = 4, there is no extra generality.

6. The complexity of a two-manifold

In order to describe the induction steps to follow, we define a partial ordering, which we call
complezity, for the combinatorial types of closed, orientable, triangulated two-manifolds
M. Let M, N be two such two-manifolds. If the genus of M is less than the genus of N,
then we say M has less complexity than N. If the genus of M equals the genus of N, and
M has fewer vertices than N, then we say M has less complexity than N. If the genus
of M is equal to the genus of N, M and N have the same number of vertices and the
minimal degree of a vertex of M is less than the minimal degree of a vertex of N, then we
say M has less complexity than N. The proof of the main theorem will be based on the
complexity of M, the underlying two-manifold. It is clear that any given two-manifold can
have only a finite number of other two-manifolds of comparable strictly less complexity in
any given chain. It is also clear that the tetrahedron with 4 vertices and 4 triangles has
strictly less complexity than any other such two-manifold. Corollary 4 allows us to start
the induction.

7. Surgery

Suppose that there are three vertices i, j,k of an orientable, closed, triangulated two-
manifold such that all three edges [i, 7], [4, k] and [k,1] are edges of M. If the triangle
4,7, k] is not part of the triangulation of M, then we say that the three edges form a
splitting triangle T for M.



Topologically T forms a simple closed curve in M which separates a neighborhood into
two components. We now describe how to do surgery along T. Remove the vertices N
and replace them with two triangles Ty, T, that are each in a new triangulation of a new
manifold M’. T\ is joined with the vertices of M in one component of the neighborhood

of T and T, is joined with the other. We call M’ the result of doing surgery on M
along T

Lemma 5. The complezity of each component of M' the surgered manifold is strictly less
than the complexity of M.

Proof. There arc essentially two cases.

Case I: T separates M into two components M;, My. Here the genus of M; UT; is no
larger than the genus of M for ¢ = 1,2. But both M; and M, have fewer vertices than M
and thus less complexity.

Case II: T does not separate M. Here M’ is connected but the genus of M’ is one
less, and thus the complexity is strictly less.

Splitting Triangle

We also need to consider what happens to the volume function when we do surgery
along a simple closed curve C' in a manifold M. By surgery we mean we cut M along C
and add a triangulated disk D (with the consistant orientation on each triangle in D) to
one local component and —D (that is D with the opposite orientation) to the other local
component, obtaining the surgered manifold M’. Let S be the (possibly singular) surface
corresponding to M, and S’ be the (possibly singular) surface corresponding to M’. Note
that M’ may consist of two components in which case the volume function is the sum of
the volume of each component. In any case we have the following.

Lemma 6. vol(S) = vol(5’).

Proof. Each triangle in the disk D contributes one extra term in the calculation of the
(generalized) volume, and the negative of that term appears in —D. Thus the volume
remains the same.



8. The proof of the Main Theorem

We will proceed by induction on the complexity of the underlying manifold M. We will
assume the statement of the theorem for all manifolds of strictly smaller complexity than
M and for all fields L. However, for the induction step we will assume that the underlying
field for M and the corresponding singular surface S is the field K described in Section 2,
where all the p;, ¢ = 1,..., N are distinct. After we have shown that 12 vol(S) is integral
over R for K, we can recover the statement of the theorem for a general field by the
Remark.

The induction starts with the tetrahedron, which has the smallest complexity. The
corresponding surface S for the tetrahedron has 12 vol(S) integral by Corollary 4. We will
assume that every manifold with comparable smaller complexity has the property that its
corresponding surface S has an integral 12 vol(S). Since there are only a finite number of
manifolds that we can obtain with splitting along a triangle or exchanging edges (described
later), we will be done when we show 12 vol(S) is integral over R with our assumption.

If M has any splitting triangle T, then the surgered manifold has each component
My, M, (possibly only one component) of smaller complexity. Thus each corresponding
surface S1, Sz has 12vol(S;), i = 1,2 integral over R. Since vol(S) = vol(S1) + vol(S2) by
Corollary 2, 12 vol(S) is integral over R.

Suppose M has no splitting triangle. Let p,41 be a point corresponding to a vertex of
M with minimum degree n. Suppose py, ... , P, are the other points in order corresponding
to the adjacent vertices. By our assumption about no splitting triangles, [¢ — 1,7 + 1] is
not in the triangulation M, (i — 1,7+ 1 mod n). Thus we can replace any edge [i — 1,7+ 1]
with [i,n + 1] and the triangles [ — 1,%,n + 1], [¢,2+ 1,n + 1] with [{ — 1,2 4+ 1,n + 1],
(i —1,4,9+ 1] to get another orientable two-manifold M; and a corresponding surface S;.
Bach M; has a smaller complexity than M, so 12vol(S;) is integral over R[d}_, ;] See
the Figure at the end of Section 7.

Let ¢ be any place defined on the field K that is finite on R. Consider its restriction to
the field generated by R[d2 5,...,d? 1 ;,1,...,d%_5,] and denote the result by the same
letter . By Lemma 4, ¢(d?_, ;) is finite for some i. Thus ¢ is finite over R[d} ;,,,].
By the induction hypothesis, ¢(12vol(S;)) integral over R[d%—l,iﬂ]' Thus ¢(12vol(S;)
is finite. By Corollary 4, ¢(12vol([p;—1, Dis Pi+1, Pn+1)) is finite as well. Since vol(S) =



vol(S;)£vol([pi—1, Di, Dit1, Pr+1]) we see that (12 vol(S)) is also finite. Thus, by Lemma 1,
12 vol(S) is integral over R and this finishes the proof of the Theorem.
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