On LTE Sequence

Masum Billal University Of Dhaka Department of Computer Science and Engineering Dhaka Bangladesh billalmasum93@gmail.com

September 11, 2015

Abstract

In this paper, we have characterized sequences which maintain the same property described in *Lifting the Exponent Lemma*. *Lifting the Exponent Lemma* is a very powerful tool in olympiad number theory and recently it has become very popular. We generalize it to all sequences that maintain a property like it i.e. if $p^{\alpha}||a_k|$ and $p^{\beta}||n|$, then $p^{\alpha+\beta}||a_{nk}|$.

Keywords: LTE, Divisibility Sequence MSC 2010 Classification: 11A25, 11A39 and 11B83.

1 Introduction

We will use just (a) for a sequence $(a_i)_{i\geq 1}$ throughout the whole article. In such a sequence, there may be some positive integers $x_1, x_2, ..., x_m$ associated which will not change. For example, (a) associated with two positive integers x, y with $a_i = x^i - y^i$ gives us the usual LTE.

Definition 1. $\nu_p(a) = \alpha$ is the largest positive integer α so that $p^{\alpha}|a$ but $p^{\alpha+1} \not|a$. We say that p^{α} mostly divides a, sometimes it's denoted alternatively by $p^{\alpha}||a$.

Theorem 1.1 (Lifting The Exponent Lemma). If x and y are co-prime integers so that an odd prime p divides x - y, then

$$\nu_p(x^n - y^n) = \nu_p(x - y) + \nu_p(n)$$

Alternatively, if $p^{\alpha}||x-y|$ and $p^{\beta}||n$, then $p^{\alpha+\beta}||x^n-y^n$.

Definition 2 (Property \mathcal{L} and \mathcal{L} Sequence). A sequence $(a_i)_{i\geq 1}$ has property \mathcal{L} if for any odd prime p which divides a_k ,

$$\nu_p(a_{kn}) = \nu_p(a_k) + \nu_p(n)$$

Alternatively, if $p^{\alpha}||a_k$ so that $\alpha \geq 1$ and $p^{\beta}||n$, then $p^{\alpha+\beta}||a_{kn}$. Call such a sequence an \mathcal{L} sequence.

Note 1. \mathcal{L} property is a much more generalization of Lifting the Exponent Lemma. In LTE, we only consider k = 1 for $x^n - y^n$.

Definition 3 (Divisible Sequence). If (a) is a sequence so that a_k divides a_{nk} for all positive integers k, n, then (a) is a *divisible sequence*.

Definition 4 (Rank of a prime). For a prime p and a sequence of positive integers $(a_i)_{i\geq 1}$, the smallest index k for which p divides a_k is the rank for prime p in (a). Let's denote it by $\rho(p)$. That is, $p|a_{\rho(p)}$ and $p \not|a_k$ for $k < \rho(p)$.

Definition 5 (Primitive Divisor). If a prime p divides a_n but p doesn't divide a_i for i < n, then p is a primitive divisor of a_n .

2 Characterizing \mathcal{L} Sequence

Theorem 2.1. If (a) is an \mathcal{L} sequence, it is also a divisibility sequence.

Proof. If $p^{\alpha}||a_k$ and $p^{\beta}||n$, then we have $p^{\alpha+\beta}||a_{kn}$ or $p^{\alpha}|a_{kn}$. Let $a_k = \prod_{i=1}^r p_i^{e_i}$, then $p_i^{e_i}|a_{kn}$ and so $\prod_{i=1}^r p_i^{e_i}|a_{nk}$ or $a_k|a_{nk}$.

Theorem 2.2. There is a sequence (b) so that

$$a_n = \prod_{d|n} b_d$$

and $(b_m, b_n) = 1$ whenever $m \ /n \ or \ n \ /m$. Moreover, we can recursively define (b) as $b_1 = a_1$ and

$$b_n = \frac{[a_1, a_2, \dots, a_n]}{[a_1, \dots, a_{n-1}]}$$

where [a, b] is the least common multiple of a and b. In particular, $b_n|a_n$.

Proof. We can prove it by induction. Base case n = 1 is easy since $b_1 = a_1$. For n > 1, Note that, we are done if we can prove that for a prime p, b_{p^i} and b_{pq} exists for $q \neq p$, a prime and $i \in \mathbb{N}$. First we prove that b_p exists for a prime p.

$$b_p = \frac{a_p}{a_1}$$

which obviously exists.

Now, for b_{p^i} we apply induction. Note that,

$$a_{p^{k+1}} = \prod_{d|p^{k+1}} b_d$$

=
$$\prod_{i=0}^{k+1} b_{p^i}$$

=
$$b_{p^{k+1}} \cdot \prod_{i=0}^k b_{p^i}$$

=
$$a_{p^k} b_{p^{k+1}}$$

$$b_{p^{k+1}} = \frac{a_{p^{k+1}}}{a_{p^k}}$$

For b_{pq} , note that, $(a_p, a_q) = (a_p, a_q) = a_1$ and since $a_p = b_1 b_p$, $a_q = b_1 b_q$, we have $[a_p, a_q] = a_1 b_p b_q = b_1 b_p b_q$.

$$a_{pq} = b_1 b_p b_q b_{pq}$$
$$b_{pq} = \frac{a_{pq}}{b_1 b_p b_q}$$
$$= \frac{a_{pq}}{[a_p, a_q]}$$

Since $a_p|a_{pq}$ and $a_q|a_{pq}$, we have $[a_p, a_q]|a_{pq}$. Hence, b_{pq} exists as well.

Theorem 2.3. $(a_m, a_n) = a_{(m,n)}$.

Proof. From the definition of (b),

$$(a_m, a_n) = \left(\prod_{d|m} b_d, \prod_{d|n} b_d\right)$$
$$= \left(\prod_{d|(m,n)} b_d\right)$$
$$= a_{(m,n)}$$

Definition 6. Let's call the sequence (b) defined above in theorem (2.2) *b*-sequence of (a). So, in order to characterize \mathcal{L} sequences, we need to actually analyze properties of (b) under \mathcal{L} property.

From now on, let's assume (a) is an \mathcal{L} sequence and (b) is its b-sequence. Also, we fix an odd prime p. For brevity, ρ will denote $\rho(p)$, the rank of p in (a). The theorems that follow can characterize an \mathcal{L} sequence quite well.

Theorem 2.4. (a) and (b) consists of the same set of prime factors and for a prime p, the rank in (a) is the same as the rank in (b).

Theorem 2.5. (a) is a divisible sequence if and only if for any positive integer s,

$$\nu_p(a_{\rho s}) = \nu_p(a_{\rho}) + \nu_p(s)$$

The two theorems above are quite straight forward.

Theorem 2.6. $p|a_k$ if and only if $\rho|k$.

Proof. Since $p|a_{\rho}$ and $p|a_k$, according to theorem (2.3), we have $p|(a_{\rho}, a_k) = a_{(\rho,k)}$. If $g = (\rho, k)$ then $g \leq \rho$. Therefore if $g \neq \rho$ then $p|a_g$ implies g is smaller than ρ and $p|a_g$, contradicting the minimality of ρ . So, $g = \rho$ and hence, $\rho|k$. The only if part is straight forward.

Theorem 2.7. If $p^r ||a_\rho|$ and $p^s ||a_k|$, then $k = p^{s-r}\rho l$ for some integer l not divisible by p.

Proof. Firstly $s \ge r$ because if s < r that would mean $p|a_k$ with $k < \rho$, so $p^r|a_k$ too. From theorem (2.6), $\rho|k$. Assume that $k = \rho t$. Using the definition,

$$\nu_p(a_{\rho t}) = \nu_p(a_\rho) + \nu_p(t)$$

$$s = r + \nu_p(t)$$

$$\nu_p(t) = s - r$$

$$t = p^{s-r}l \text{ with } p \not|l$$

Thus, $k = \rho p^{s-r} l$.

Theorem 2.8. If $p \not\mid \rho$, then there exists a unique $d \mid \rho$ such that $p \mid b_{pd}$. Let's denote such d by δ . Moreover, $p \not\mid b_{pd}$ for $d \neq \delta$ and $p \mid |b_{p\delta}$.

Proof. $\nu_p(a_{\rho p}) = \nu_p(a_{\rho}) + 1$. We get,

$$p \quad || \quad \frac{a_{\rho p}}{a_{\rho}}$$

$$= \quad \frac{\prod_{d|\rho p} b_d}{\prod_{d|\rho} b_d}$$

$$= \quad \prod_{\substack{d|\rho \\ d|\rho p}} b_d$$

$$= \quad \prod_{d|\rho} b_{pd}$$

This implies that only one δ among all divisors of ρ has the property that $p||b_{p\delta}$ and $p \not|b_{pd}$ for $d \neq \delta$.

Theorem 2.9. If $(p\rho, k) = 1$, then for any divisor d of ρ and e a divisor of $k, p \not| b_{de}$.

Proof. If $p \not| k$, then

$$\nu_p(a_{k\rho}) = \nu_p(a_{\rho})$$

But $a_{\rho}|a_{\rho k}$. Therefore, $p \not\mid \frac{a_{\rho k}}{a_{\rho}}$.

$$\frac{a_{k\rho}}{a_{\rho}} = \frac{\prod_{d|\rho k} b_d}{\prod_{d|\rho} b_d}$$
$$= \prod_{\substack{d|\rho \\ d|\rho k}} b_d$$
$$= \prod_{e|k} \prod_{\substack{d|\rho \\ d|\rho e}} b_d$$
$$= \prod_{e|k} \prod_{d|\rho} b_{de}$$

Since p is a prime, p can't divide any of those b_{de} .

3 Conjectures

Conjecture 1. If $(p, \rho(p)) \neq 1$, then $p = \rho(p)$. Otherwise, $(p, \rho(p)) = 1$.

Conjecture 2. If $(b_m, b_n) > 1$, then $\frac{m}{n} = p^{\alpha}$ for some α .

We all know about the open problem: Decide if F_p if square-free. Here is a stronger version of that. It is because, F_n is a divisibility sequence and \mathcal{L} sequence.

Conjecture 3. b_n is square-free if n is square-free.

The following conjecture (if true) is a much more generalization of Zsig-mondy's theorem, see (2).

Conjecture 4. a_n has a primitive prime divisor except for some finite n. Moreover, there is a positive integer M so that, whenever a_n doesn't have a primitive divisor, n|M.

References

- [1] Amir Hossein Parvardi, *Lifting The Exponent Lemma(LTE)*, www.taharut.org/imo/LTE.pdf
- [2] Bart Michels, Zsigmondys Theorem, users.ugent.be/~bmichels/files/zsigmondy_en.pdf