
3. (a) [9 marks] Let f : U → C be a holomorphic function defined on an open subset U of C
and let u = Ref and v = Imf .

State and prove the Cauchy–Riemann equations satisfied by u and v.

Consider the continuous function
√
z on the cut plane C\(−∞, 0] whose real and imaginary

parts satisfy
u2 − v2 = x, 2uv = y.

Verify explicitly the Cauchy–Riemann equations in this case.

(b) [8 marks]

(i) Define the holomorphic branch L(z) of log z on the cut-plane C\Rα, such that L(1) =
0, where the ray Rα is given by Rα = {z ∈ C : z = reiα, r ∈ [0,∞)} with 2π > α > 0.
Assume α 6= π/2 and compute ii using this branch.

(ii) Define a holomorphic branch of f(z) = log(z2 − 1) on the cut-plane

C\{(−∞,−1] ∪ [1,∞)}.

Show that the branch is single valued as we cross the real axis away from the cut.

(iii) Define a holomorphic branch of f(z) = log z−1
z+1 on the cut-plane C\[−1, 1]. Show that

the branch is single valued as we cross the real axis away from the cut.

(c) [8 marks] Explain why the following sequence of functions

fn(z) =

n∑
k=−n

(−1)k

(z + k)2

converges to a holomorphic function f(z) on C\Z as n→∞. Explain why f(z) is periodic
and then find a closed form expression for it. Use this expression to compute

∞∑
k=1

(−1)k

k2
.
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1 Complex Analysis (problems 3,4,5) - Model solutions

1. (Solution)

(a)[B] The Cauchy-Riemann equations state ux = vy and uy = −vx. [2 marks]

We can take f ′(z) in two different ways, and they should agree. Introducing z = x + iy we
can compute

∂xf(z0) = lim
t→0

f(z0 + t)− f(z0)

t
= f ′(z0) (1)

∂yf(z0) = lim
t→0

f(z0 + it)− f(z0)

t
= i lim

t→0

f(z0 + it)− f(z0)

it
= if ′(z0) (2)

hence ∂yf(z0) = i∂xf(z0). Writing f(z) = u(z) + iv(z) and decomposing into real and
imaginary parts, the Cauchy-Riemann equations follow. [4 marks]

[B/S] The real and imaginary part of the square root satisfy u2−v2 = x and 2uv = y. Hence

2(uux − vvx) = 1, 2(uuy − vvy) = 0, 2(uvx + uxv) = 0, 2(uvy + uyv) = 1

We can then solve for ux, uy, vx, vy, to find

ux = vy =
u

2(u2 + v2)
, uy = −vx =

v

2(u2 + v2)

[3 marks]

(b) i.- [S]. Each z on the given cut plane can we written as z = reiθ with r > 0 and
α− 2π < θ < α. We then define L(z) = log r+ iθ which indeed satisfies L(1) = 0. [1 marks]
Now ii = eiL(i). If α > π/2 the L(i) = iπ/2. Otherwise L(i) = −3/2iπ. From here we can
write ii for each case. [2 marks]

ii.- [S] Now we define z− 1 = r1e
iθ1 and z+1 = r2e

iθ2 , where 0 < θ1 < 2π and −π < θ2 < π.

L(z2 − 1) = log(r1r2) + i(θ1 + θ2)

As we cross the real axis along the segment [−1, 1], e.g. across z = 1/2 or z = −1/2, both
θ1 and θ2 change continuously. [2 marks]

iii.- [S] Again we define z − 1 = r1e
iθ1 and z + 1 = r2e

iθ2 , but now −π < θ1, θ2 < π. Then

L(
z − 1

z + 1
) = log(r1/r2) + i(θ1 − θ2)

As we cross the x > 1 part of the real axis, both arguments change continuously. As we
cross the part x < −1, both arguments change by 2π, but this change cancels in the above
combination. [3 marks]

(c) [N] The functions fn(z) are clearly holomorphic in the complex plane except at 2n + 1
points where the poles are located. Now we can choose a disk with center not among these
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points, and small enough radius. The M-test says that the series converge uniformly. [2
marks]

The function fn(z) has double poles at integer values z = −k, · · · , k with residue (−1)k. In
the limit n → ∞ we see the function is invariant under z → z + 2 [1 mark]. A way to find
the result is by noting that f(z) = −g′(z), where g(z) has single poles with residue (−1)k.
Then by periodicity it follows g(z) = π/ sin(πz). Taking the derivative it follows [2 marks]

f(z) =
π2

sin(πz) tan(πz)

To solve the last part we compute the expansion of this function around z = 0. We get

f(z) =
1

z2
− π2

6
+ · · ·

The quadratic pole corresponds to the term k = 0 in the sum defining f(z) as a sum. The
finite part corresponds to twice the sum we are asked to compute. We find

∞
∑

k=1

(−1)k

k2
= −π2

12

[3 marks]

2. (Solution)

(a)[B] By Laurent’s Theorem there exist unique cn ∈ C such that

f(z) =
∞
∑

n=−∞

cn(z − a)n, 0 < |z − a| < r

Then we say that f(z) at a has:

.- A removable singularity if cn = 0 for all n < 0.

.- A pole of order n if c−n 6= 0 and cm = 0 for all m < −n.

.- An essential singularity if cn 6= 0 for infinitely many n < 0. [4 marks]

An equivalent definition is to say that f(z) has a removable singularity if it is bounded near
z0, a pole if 1/f(z) has a removable singularity at z0 and an essential singularity it it has an
isolated singularity which is neither removable nor a pole.

[B] For the first function we note cos z = 0 at z = π/2+2nπ and z = −π/2+2nπ. Hence at
these points we have double poles, except at z = π/2 where we have a removable singularity.
[2 marks]

[B] In the second case we have single poles at all the n roots of unity. In other words
z = eiπ2k/n, where k = 0, · · · , n− 1. [2 marks].
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