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The Sidesglitting Story of the

Midpoint

nderstanding what area means and learn-
U ing ways to calculate the area of various fig-

ures are important objectives in geometry.
Students as adults will use concepts related to find-
ing areas of polygons in many contexts, such as
finding the area of their backyard or knowing how
much wallpaper is needed to cover a wall in their
dining room. One context for exploring area rela-
tionships is comparing the area of a polygon to the
area of its associated midpoint polygon, formed by
joining the midpoints of consecutive sides of the
original polygon. This articie describes activities
that examine the patterns and relationships
between the areas of polygons and those of their
associated midpoint polygons for triangles, quadri-
laterals, pentagons, and other polygons. We shall
also look at the pattern for regular polygons.

TRIANGLES

A corollary to a very old theorem introduced in
most high school geometry books and called the
triangle, or parallel proportionality, theorem states
as follows:

SIDESPLITTING THEOREM. A line segment connecting
the midpoints of two sides of a triangle is parallel
to, and half the length of, the third side.

In figure 1, D and E are the respective midpoints of
sides AB and BC in A ABC. Because of the theorem,
we also know that A DBE is similar to A ABC. By
connecting D and E to point F, the midpoint of AC,
we get A DEF, the midpoint triangle, which is also
one of four congruent smaller triangles, each similar
to A ABC. So the area of A DEF is one-fourth of
the area of A ABC, regardless of the type of triangle
ABC is. This result is used to explain the relation-
ship found for quadrilaterals.

QUADRILATERALS

The next extension often taken by teachers is to
investigate a theorem about quadrilaterals that has
been attributed to Pierre Varignon (1654-1722)
(Coxeter 1969). Varignon’s theorem is as follows:
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VARIGNON’S THEOREM. [Line segments connecting]
the midpoints of the sides of a (convex) quadrilat-
eral form a parallelogram that has half the area
of the original quadrilateral.

Some activities relating to this theorem were
explored in two issues of Student Math Notes
(NCTM 1988; White, Olson, and Olson 1989).
Varignon’s theorem suggests a nice application
activity for straightedge and compass or Plexiglas
Mira or Reflecta constructions to find the midpoints
of the sides of quadrilaterals (see MIRA Math Co.
[1973]). Another possible tool is The Geometric
Supposer—Quadrilaterals software from Sunburst
(see Houde and Yerushalmy [1986] for activities
using this software).

Using any of the foregoing methods, students
can generate and investigate patterns and conjec-
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tures about quadrilaterals even before Varignon’s
theorem is formally introduced in class. Typically
students are asked to identify and verify that the
midpoint quadrilateral is always a parallelogram.
However, students could also be asked to look for
other patterns, or the teacher could ask specific
questions. Some possible questions are these:
What happens with concave quadrilaterals? What
type of parallelogram is formed if the original
quadrilateral is a rhombus? Does a relationship
exist between the number of lines of symmetry of
the original quadrilateral and those of the mid-
point quadrilateral? What about rotational symme-
try? How do we know that the area of the midpoint
quadrilateral is half the area of the original
quadrilateral?

D

Fig. 2
Midpoint paratlelogram has
one-half the area of the original quadrilateral.

The part of Varignon’s theorem concerning the
area of the midpoint quadrilateral has not often been
included in high school textbooks. One proof that
uses the sidesplitting theorem and the diagonals of
the original quadrilateral is shown in figure 2:

area (/A BEF) = % area (A ABC)

and
area (A DHG) = % area (A ADC).

Therefore
area (A BEF) + area (A DHG) = % area (ABCD).

Similarly
area (A AEH) + area (A CGF) = % area (ABCD).

Thus the complement of the midpoint parallelo-
gram is half the area of the original quadrilateral,
and the midpoint parallelogram is half the area of
the original quadrilateral.

Paper folding can be used to demonstrate this
area relationship in the classroom. Students first
draw a quadrilateral using a straightedge and then
carefully cut it out (fig. 3a). Each side of the
quadrilateral is folded in half so that the endpoints
meet, and the midpoint is pinched (fig. 3b). The
paper is then folded along consecutive midpoints
creating the midpoint parallelogram and four trian-
gles (fig. 3c). After the four triangles are cut out,
the students are asked to fit the four triangular
pieces on the parallelogram. A similar cut-and-
paste activity could be used to demonstrate the
midpoint-polygon relationship for triangles.

The teacher can also demonstrate the cut-and-
paste process in class. For quadrilaterals, draw a
quadrilateral and the midpoint parallelogram on a
transparency. Then duplicate the drawing on paper
and fold and cut as described previously. Then the
triangular pieces of paper and the transparency can
be used with the overhead projector to demonstrate
the area relationships. Colored transparency mate-
rial could be cut out instead of paper.

The fact that the outside triangles can indeed be
placed intact on the parallelogram (fig. 3d) is
somewhat surprising to students and leads to sev-
eral questions:

o Can we justify the process? Will it always work?

o What is the pattern for the placement of those
triangles?

¢ Do all four triangles always meet in one point? If
yes, is it unique? Can we identify the point?

We shall begin by examining the special case in
which the original quadrilateral is a parallelogram
(fig. 4). Point I is the intersection of the diagonals
of the original quadrilateral, AC and BD. Since
ABCD is a parallelogram, I is also the midpoint of
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coincide with I. Similarly we can show that EBFI, ?
FCGI, and GDHI are also parallelograms and that n-gons:
the respective outer triangles A EBF, A FCG, and
A\ GDH can also be rotated 180 degrees to fit
together inside the parallelogram.
What happens with the general quadrilateral?
First note that in the general case the intersection
of the diagonals, AC and BD, is no longer the mid-
point of those diagonals. Let O be the midpoint of

B C one diagonal, say AC (fig. 5). Then, as in the case
of the parallelogram, we can show that EBFO and
GDHO are parallelograms allowing us to rotate
| AEBF and A GDH 180 degrees about the mid-
points of EF and GH, respectively. A surprising
aspect of this case is that even though the remain-
ing two triangles cannot be rotated inside, they do
move inside by translation. We find that A EOH =
A A FCG and A AEH = A\ OFG by the side-side-side

D
(a)
(b)
D
(c) theorem, using the equality of opposite sides of
could be used for this process. In each case the two
triangles that are not intersected by the diagonal
chosen are rotated and the other two triangles are
translated to the opposite side (see fig. 6). This
(d)

D

parallelograms. The midpoint of either diagonal
activity could be used as an application for devel-

oping the language of transformations. Varignon’s

Fig. 3
Paper-folding and cut-and-paste process
for midpoint quadrilateral

AC and BD. Connect I to each of the vertices of the
midpoint parallelogram to create four triangles.
Using the sidesplitting theorem with A ABD, we
can show that AEIH is a parallelogram, which o Fig. 5 '
means that we can rotate A HAE 180 degrees Midpoint-polygon-area proof for general quadrilateral
about the midpoint of EH and point A will then

Vol. 87, No. 4 * April 1994 251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



252

Does

every area
ratio
between
1/2 and 3/4
yield a
polygon?

Photograph by TRICON Mathematics; all rights reserved

ricon REFLECTA

theorem also holds for concave quadrilaterals
{(Coxeter and Greitzer 1967) and can be demon-
strated by modifying the foregoing cut-and-paste
process.

PENTAGONS

We have seen that the ratio of the area of the mid-
point triangle to the area of the original triangle,
which we shall call the area ratio, is always 1/4. We
have also seen that the area ratio for quadrilaterals

Fig. 6
Transformations to show area relationship

is always 1/2. We next examine whether the area
ratio is a constant for n-gons for n greater than 4.

Let us consider pentagons first. One approach for
beginning this exploration would be to have stu-
dents experiment constructing midpoint pentagons
using geoboards or square dot paper. (Make sure
the students choose the vertices of the original pen-
tagon in such a way that the vertices of the mid-
point pentagon are also lattice points.) Then the
areas can be found using Pick’s theorem. Let I be
the number of interior points and B the number of
boundary points. Pick’s theorem states that the area
of a polygon is I - 1 + B/2. {See Smith [1990] or
Hawkins [1988] for other activities involving Pick’s
theorem.) Students will discover that the area ratios
for pentagons are not constant. They can be chal-
lenged to try to obtain the largest and the smallest
area ratios. Students could work in cooperative
groups for this activity. It turns out that pentagons
can have area ratios between 1/2 and 3/4.

AREA RATIO FOR CONVEX PENTAGONS THEOREM. The
area ratio of a convex pentagon is between 1/2
and 3/4. Moreover, any number in that range is
the area ratio of some pentagon.

The proof of this theorem relies on the fact that tri-
angles with equal bases and heights have the same
area. For example, in figure 7 the area of A DEF
remains unchanged when F is moved along line AC,
which is parallel to DE. It follows that if two trian-
gles have the same base, the one with the larger
height has larger area. First we shall show that
area ratios for pentagons are greater than 1/2. Next
we shall show that area ratios for pentagons are
less than 3/4.
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Fig. 7
Constant distance between parallel lines
makes triangles with equal area.

Area ratios greater than 1/2. In figure 8a,

FGHIJ is the midpoint polygon for pentagon
ABCDE. In A ABE, if we choose a point K (we
have chosen the intersection of BE and AD)
on BE (which we know is parallel to JF from the
sidesplitting theorem), then A JFK and A AFJ
have the same area. Similarly, in figure 8b,
A FGL and A FGB, A GHM and A GHC, A HIN
and A HID, and A IJO and A IJE, by pairs, have
the same area. This process is like moving the tri-
angles as we did with quadrilaterals. In this case
the triangles, though not congruent, still have the
same area. Since pentagon FGHIJ is not fully
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Fig. 8
Area ratio greater than 1/2 for a pentagon

covered when the outside triangles are moved
inside, the area of the midpoint pentagon is
greater than half the area of the original pentagon
ABCDE.

Area ratios less than 3/4. The proof that the area
ratios for pentagons are less than 3/4 is best under-
stood in terms of what has been called flexing
(Anderson and Arcidiacono 1989). Suppose that 4,
B, C, D, and E are five consecutive vertices of any
polygon. To flex a polygon at the vertex C means
that the polygon is deformed in such a way that C
moves along the line that passes through C and is
parallel to BD (see fig. 9). Notice that the area of
the polygon remains unchanged because the area of
the moving part, /A BCD, does not change. We can
also flex the polygon at C even if B, C, and D are
collinear, and again, the area of the polygon does
not change under flexing. We shall consider flexings
that make the polygon more degenerate, that is, the
polygon will approach becoming a polygon with
fewer sides. For example, in figure 9, if ABCDE
are the vertices of a pentagon, then it becomes a
quadrilateral when the vertex C is translated along
to the intersection of CC’ and AB.

What happens to the midpoint polygon when a
polygon is flexed? Let F,G,H, and I be the mid-
points of the consecutive sides AB, BC, CD, and DE
of a polygon (fig. 10). Suppose E is closer to BD
than A is; then I is closer to GH than F is. Let us
flex C to ", Since GH = G’'H’=(1/2)BD, GG’=HH’
and area (A GG'F) is greater than area (A HH'I)
(because the height of A GG'F is greater than the
height of A HH’I), making area (FG’H'I) greater
than area(FGHI ). Since the area of the original
polygon does not change, we have increased the
area ratio by flexing. (If we had flexed C to C”, a
similar argument shows that the area ratio

Fig. 9
Flexing process
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Fig. 10
Flexing to increase area ratio

decreases. If we flex C past C’ or C”, then the pen-
tagon becomes nonconvex.) The limit for the area
ratio by flexing at any vertex occurs when the ver-
tex becomes collinear with an adjacent side.

We can then show that the area ratio of a convex
pentagon is less than 3/4. Figure 11 shows the
process of flexing pentagon ABCDE four times into
a limiting triangle. Figure 11a shows pentagon
ABCDE and its associated midpoint pentagon
FGHIJ. First we flex B to B” on DC) because E is
closer to AC than D is [fig. 11b]). Then we flex ver-
tex A to A’ on DE (because C is closer to B'E than D
is [fig. 11c]). Next we flex C to C’ on BA’ (because

E is closer to B’D than A’is [fig. 11d]). (Note that
C’is also B” and consequently also G”.) Finally we
flex vertex E to A’ (which is also J”) (fig. 11e). In
figure 1le we see that area (F'G”H’IJ”) = 3/4 area
(A’B’D) as a consequence of the sidesplitting theo-
rem for triangles. Because each step in this specific
flexing process increases the area ratio, and be-
cause the resulting triangle obviously is not really a
pentagon, we know that the area ratio for the origi-
nal pentagon must be strictly less than 3/4.

Convex pentagons exist whose area ratios are
arbitrarily close to 1/2 or 3/4 (see pentagon, and
pentagon, in fig. 12). By continually deforming pen-
tagon, into pentagon,, we obtain a family of convex
pentagons whose area ratios range between the
area ratios of pentagon, and pentagon,. It follows
that any number between 1/2 and 3/4 is the area
ratio of some convex pentagon.

OTHER POLYGONS

What about hexagons and other n-gons? For the
upper bound, the arguments presented previously
still apply, but the degenerate polygon (limiting tri-
angle) one obtains at the end of the flexing process
will coincide with its own midpoint polygon, mak-
ing the area ratio 1 (see fig. 13 for an example). For
the lower bound, the argument presented earlier
for pentagons can be applied to general n-gons to
show that if n > 4, the area ratios of n-gons are
greater than 1/2. So in general we have the follow-
ing theorem:

AREA RATIO FOR GENERAL POLYGONS THEOREM. The

B'= GH= CI

A! = JN= E!
(e)
Fig. 11
Flexing process to maximize area ratio for pentagons
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Fig. 12
Area ratios for pentagons range from 1/2 to 3/4.

range of the area ratios for n-gons (n > 5)is
between 1/2 and 1.

Students can demonstrate that the area ratios of
polygons are greater than 1/2 with graph paper
using the midpoint formula and other ideas from
coordinate geometry. Suggest that they use lattice
points as vertices of the original polygon to make
the identification of the midpoints easier. Introduce
an origin and axis on the drawing and have stu- (6)
dents find the midpoints of each side of their n-gon Fig 14
(see fig. 14a). After constructing their midpoint Activity using coordinates
polygon, students can use the process for the pen- o explore area ratios for polygons

A
Y

A

B

tagons shown in figure 8 with their polygons. Stu-
dents will find it much easier to see if they use one
color for the original polygon, a second color for
their midpoint polygon, and a third color to draw
the diagonals needed. The intersections of diago-
nals that connect every other point on the original
polygon can be used to identify the triangles inside
C their midpoint polygon that have the same areas as
the triangles formed outside the midpoint polygon
D (see fig. 14b). Students will be able to see that the
triangles do not cover the entire area of the mid-
Maximizing are’zgré:igs for hexagons point polygon. This activity makes continual use of
the sidesplitting theorem for triangles and will
strengthen students’ understanding of the area of a
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Fig. 15
Area ratio for regular polygons

triangle as well. The dot-paper activities involving
Pick’s theorem described earlier could be used to
demonstrate the area relationships for general
polygons as well.

REGULAR POLYGONS

What is the pattern for regular polygons? In this situ-
ation, the midpoint polygon is also regular and, there-
fore, similar to the original polygon. So the area ratio
is the square of the ratio between the lengths of the
sides of the midpoint polygon and those of the original
polygon. From figure 15 we can see that the latter ra-
tio is cos (180°n). So the area ratio for a regular n-gon
is cos® (180%n). For n = 5, 6, 7, the area ratios are ap-
proximately .65, .75, and .81, respectively. Note that
the area ratio approaches 1 as n gets larger, which
means that as the number of sides (n) increases, the
area outside the midpoint polygon gets smaller.
Archimedes used area ratios for regular polygons
and their midpoint polygons in a very different con-

Fig. 16
Using midpoint polygons to approximate pi

text to arrive at an approximation of pi (Dijkster-
huis 1987). In figure 16, the inscribed hexagon is
the midpoint polygon of the circumscribed hexagon.
Archimedes reasoned that the area of the circle of
radius one unit () was larger than the inscribed
polygon and smaller than the circumscribed poly-
gon. So he calculated the area of each hexagon and
was able to limit the range of the value of pi. He
then doubled the number of sides and calculated
the area of each polygon again. Through this
process of doubling sides, he eventually arrived at a
polygon with 96 sides and estimated pi correctly to
two decimal places. At the same time he was also
demonstrating that as the number of sides of the
regular polygon increased, the area of the associat-
ed midpoint polygon approached the area of the
original polygon.
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