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The Heron’s formula [1, 4, 7, 14, 15, 17, 18], named after Hero of Alexandria, gives
the area of a triangle when the length of all three sides are known. Indian
mathematician and astronomer Brahmagupta, in the seventh century, gave the
analogous formula for a cyclic convex quadrilateral [6, 10]. In 1842 German
mathematician Carl Bretschneider related the area of a general convex quadri-
lateral to its side lengths and the sum of two opposite angles [5, 8, 11]. Heron’s
formula is a special case of Brahmagupta’s formula for the area of a cyclic
quadrilateral. Heron’s formula and Brahmagupta’s formula are both special
cases of Bretschneider’s formula for the area of a quadrilateral.

In this note we prove the Heron’s formula (although known, see Conway’s
dicussion in [7]), the Brahmagupta’s formula (also known, see [6]) and the for-
mula for the area of a bicentric quadrilateral (possibly new, see [12, 13]),

√
abcd,

based on two lesser-known trigonometric formulae [6, 16] involving sine, cosine,
the semiperimeter and the side lenghts of a cyclic quadrilateral. Once the two
trigonometric formulae have been established (and the necessary adjustments
made), the proofs of these area theorems are greatly simplified. Furthermore, we
present a generalization of the two aforementioned trigonometric formulae and
use it to give an alternative proof of Bretschneider’s formula. Since all these area
theorems can be derived from this new generalization, the approach presented
in this note, unlike others, provides a more holistic view of these theorems. Our
main result for a general convex quadrilateral are the identities
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= (s− a)(s− d)

and

bc sin2 γ

2
+ ad cos2

α

2
= (s− b)(s− c),

where a, b, c, d are the sides lengths, s is the semiperimeter, and α and γ are
opposite angles.

We recall a cyclic quadrilateral is a quadrilateral whose vertices all lie on a
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single circle. Among other characterizations, a convex quadrilateral ABCD is
cyclic if and only if its opposite angles are supplementary, that is α+ γ = 180◦

[19] (see Figure 1).

Figure 1: A cyclic quadrilateral ABCD.

Theorem 1. Let ABCD be a cyclic convex quadrilateral with AB = a, BC = b,
CD = c, DA = d and s = a+b+c+d

2 . If ∠BAD = α, then

sin2 α

2
=

(s− a)(s− d)

ad+ bc
and cos2

α

2
=

(s− b)(s− c)
ad+ bc

. (1)

Proof. First we will find an expression for cosα in terms of a, b, c and d. Let
∠BCD = γ. By the Law of Cosines and keeping in mind that α and γ are
supplementary, we have

a2 + d2 − 2ad cosα = b2 + c2 − 2bc cos (180◦ − α).

Yielding cosα = a2+d2−b2−c2
2(ad+bc) . Now, making use of the half angle formula for

cosine,
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α

2
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(2)

=
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4(ad+ bc)

=
(a+ b− c+ d)(a− b+ c+ d)

4(ad+ bc)
(3)

=
1

ad+ bc

(
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2
− c
)(

a+ b+ c+ d

2
− b
)
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=
(s− b)(s− c)

ad+ bc
.

The other formulae can be obtained similarly by replacing cos2 α2 by 1−sin2 α
2

in (2).

In personal email communication with Peter Doyle [7], the renowned mathe-
matician J. H. Conway has given the same proof of Heron’s formula that we
present here. However, as the aim of this paper is to present these area theo-
rems as mere links of a chain of related theorems from a new standpoint, we
deduce (4) in a different way by just setting c = 0 in (1).

Here, ∆0, ∆1, ∆2 and ∆3 stand for the areas of a triangle, a cyclic quadri-
lateral, a bicentric quadrilateral and a general quadrilateral, respectively.

Theorem 2 (Heron). Let a triangle 4ABD has sides AB = a, BC = b and
AD = d, then the area is given by the formula

∆0 =
√
s(s− a)(s− b)(s− d).

Proof. For a triangle, if in (1) we assume c = 0, then we have the well-known
formulae1

sin2 α

2
=

(s− a)(s− d)

ad
and cos2

α

2
=
s(s− b)
ad

. (4)

Making use of the double-angle identity for sine we have

sinα = 2

√
s(s− b)
ad

√
(s− a)(s− d)

ad
= 2

√
s(s− a)(s− b)(s− d)

ad
.

Since ∆0 = ad sinα
2 , it follows

∆0 =
√
s(s− a)(s− b)(s− d).

As mentioned, the following proof of Brahmagupta’s formula is known. How-
ever, no further generalizations of (1) are given in [6].

Theorem 3 (Brahmagupta). Given an cyclic quadrilateral, ABCD, with sides
a, b, c, d and semiperimeter, s, then its area is given by the formula

∆1 =
√

(s− a)(s− b)(s− c)(s− d).

1For more implications in a triangle see [9].
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Proof. Let α and γ are two opposite angles. The area of ABCD can be expressed
as the sum of the area of 4ABD and 4BCD, which in turn can be written as
ad sinα

2 + bc sin γ
2 . Keeping in mind that α and γ are supplementary and applying

the formulae in (1) we have

∆1 =
ad sinα

2
+
bc sin (180◦ − α)

2

=
ad sinα

2
+
bc sinα

2

= sin
α

2
cos

α

2
(ad+ bc)

=

√
(s− a)(s− d)

ad+ bc

√
(s− b)(s− c)

ad+ bc
(ad+ bc)

=
√

(s− a)(s− b)(s− c)(s− d).

A bicentric quadrilateral is a convex quadrilateral that has both an incircle
and a circumcircle (see Figure 2). One characterization states that a convex
quadrilateral ABCD with sides a, b, c, d is bicentric if and only if opposite sides
satisfy a + c = b + d and its opposite angles are supplementary [19]. Another
property of a bicentric quadrilateral is that its area is given by the formula√
abcd. Six derivations of this formula can be found in [12, 13]. One derivation

is to use a+ c = b+ d in Brahmagupta’s Formula. Here we shall give a seventh
proof which is independent from Brahmagupta’s Formula.

Figure 2: A bicentric quadrilateral ABCD.
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Theorem 4. Given an bicentric quadrilateral, ABCD, with sides a, b, c and
d, then its area is given by the formula

∆2 =
√
abcd.

Proof. Since a+ c = b+ d in a bicentric quadrilateral, the formula (3) reduces
to

cos2
α

2
=

ad

ad+ bc
.

Similarly we can get sin2 α
2 = bc

ad+bc . Now, following the same steps as in
Brahmagupta’s formula

∆2 =
ad sinα

2
+
bc sin (180◦ − α)

2

=
ad sinα

2
+
bc sinα

2

= sin
α

2
cos

α

2
(ad+ bc)

=

√
bc

ad+ bc

√
ad

ad+ bc
(ad+ bc)

=
√
abcd.

The following theorem generalizes Theorem 1 for a general convex quadri-
lateral.

Theorem 5. Let a, b, c, d be the sides of a general convex quadrilateral, s is
the semiperimeter, and α and γ are opposite angles, then

ad sin2 α

2
+ bc cos2

γ

2
= (s− a)(s− d) (5)

and

bc sin2 γ

2
+ ad cos2

α

2
= (s− b)(s− c). (6)

Proof. By the Law of Cosines,

a2 + d2 − 2ad cosα = b2 + c2 − 2bc cos γ.

Yielding cosα = a2+d2−b2−c2+2bc cos γ
2ad . Now, making use of the half angle

formula for cosine,

cos2
α

2
=
a2 + d2 + 2ad− b2 − c2 + 2bc cos γ

4ad
(7)
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Figure 3: A general convex quadrilateral ABCD.

=
a2 + d2 + 2ad− b2 − c2 + 2bc(1− 2 sin2 γ

2 )

4ad

=
(a+ d)2 − (b− c)2 − 4bc sin2 γ

2

4ad

=
(a+ d+ b− c)(a+ d− b+ c)− 4bc sin2 γ

2

4ad

=
1

ad

(
a+ b+ c+ d

2
− c
)(

a+ b+ c+ d

2
− b
)
−
bc sin2 γ

2

ad

=
(s− b)(s− c)− bc sin2 γ

2

ad
.

As in Theorem 1, the other formula can be obtained similarly by replacing
cos2 α2 by 1− sin2 α

2 in (7).

In the case of a cyclic convex quadrilateral, you get (1) by replacing γ
2 by

90◦ − α
2 in (5) and (6), since α+ γ = 180◦.

Theorem 6 (Bretschneider). Given a general quadrilateral with sides a, b, c
and d. If α and γ are two opposite angles, then the area is given by the formula

∆3 =

√
(s− a)(s− b)(s− c)(s− d)− abcd cos2

(
α+ γ

2

)
.

Proof. Multiplying (5) and (6) we get

(
ad sin2 α

2
+ bc cos2

γ

2

)(
bc sin2 γ

2
+ ad cos2

α

2

)
= (s− a)(s− b)(s− c)(s− d).
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Expanding, factorizing, completing the squares and keeping in mind some
well-known trigonometric identities,

abcd cos2
(
α+ γ

2

)
+

(
ad sinα

2
+
bc sin γ

2

)2

= (s− a)(s− b)(s− c)(s− d).

Since the area of ABCD can be expressed as the sum of the areas of 4ABD
and 4CBD, which in turn can be written as ad sinα

2 + bc sin γ
2 , then we are

done.
It is interesting to note the resemblance of these area theorems to the identi-

ties (4), (1), (5) and (6). Indeed, as Heron’s formula and Brahmagupta’s formula
are both special cases of Bretschneider’s formula, in the same way, the identities
(4) and (1) are both special cases of the identities (5) and (6). Actually, this
better explains the development Heron-Brahmagupta-Bretschneider. Finally we
wonder how many other interesting implications the identities (5) and (6) could
have. What other research project could they inspire? For example, shall it be
possible to obtain analogous identities in spherical or hyperbolic geometry?1If
so, how would they relate to other well-known identities in such geometries? We
leave the reader with these intriguing questions in mind.
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