Math 255: Algebraic Curves

Bernd Sturmfels, UC Berkeley, Fall 2011 Homework # 3, due Tuesday, September 27

- 1. [Kirwan 4.5] Prove: Every cuspidal cubic curve in the plane \mathbb{P}^2 is projectively equivalent to the curve $\{y^2z = x^3\}$, and every nodal cubic curve in \mathbb{P}^2 is projectively equivalent to the curve $\{y^2z = x^2(x+z)\}$.
- 2. [Kirwan 5.4] Show that if R is a compact connected Riemann surface then there are no nonconstant holomorphic functions $f: R \to \mathbb{C}$.
- 3. Prove the Addition Theorem for Weierstrass' \wp -function: If x, y, z are complex numbers satisfying x + y + z = 0 then

$$\det \begin{pmatrix} \wp(x) & \wp'(x) & 1\\ \wp(y) & \wp'(y) & 1\\ \wp(z) & \wp'(z) & 1 \end{pmatrix} = 0.$$

- 4. [Kirwan 5.12] Let Λ be a lattice in \mathbb{C} . Show that $g_2(\Lambda)^3 27g_3(\Lambda)^2 \neq 0$.
- 5. [Kirwan 5.14] Let C and \tilde{C} be the non-singular cubic curves in \mathbb{P}^2 defined by $y^2z = 4x^3 - g_2xz^2 - g_3z^3$ and $y^2z = 4x^3 - \tilde{g}_2xz^2 - \tilde{g}_3z^3$. Show that there is a projective transformation of \mathbb{P}^2 given by a diagonal matrix taking C to \tilde{C} if and only if $J(C) = J(\tilde{C})$, where

$$J(C) = \frac{g_2^3}{g_2^3 - 27g_3^2}$$

- 6. Consider the non-singular cubic curve C defined by $y^2z = 4x^3 + xz^2 + z^3$. Using a numerical computation, find a lattice Λ in \mathbb{C} such that $C = C_{\Lambda}$. To be precise, identify generators $\omega_1, \omega_2 \in \mathbb{C}$ of your lattice Λ and determine their real and imaginary parts up to ten digits of accuracy.
- 7. Let \tilde{C} denote the *dual curve* of the previous C, as in [Kirwan, 5.18]. Find the defining polynomial of \tilde{C} and identify all singular points of \tilde{C} .