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2.2 (a) Let f = y3 − y2 + x3 − x2 + 3y2x+ 3x2y + 2xy, then

∂f

∂x
= 3x2 − 2x+ 3y2 + 6xy + 2y

∂f

∂y
= 3y2 − 2y + 6xy + 3x2 + 2y

Subtracting the bottom equation from the top one, we get y = x, which implies that the only
solution is x = 0, y = 0. So the only singular point is (0, 0), with multiplicity 2. To find the
tangent lines, we factorize the polynomial from (2.1), which is −x2 − y2 + 2xy = −(x − y)2. So
the tangent line is y = x, and the multiplicity is not ordinary.

(b) Let f = x4 + y4 − x2y2, then

∂f

∂x
= 4x3 − 2xy2 = 2x(

√
2x+ y)(

√
2x− y) = 0

∂f

∂y
= 4y3 − 2x2y = 2y(

√
2y + x)(

√
2y − x) = 0

The only solution is x = 0, y = 0, so the only singular point is (0, 0), with multiplicity 4. To find
the tangent lines, we factorize the polynomial x4 − x2y2 + y4, to get

x4 − x2y2 + y4

=

(
x2 − 1 + i

√
3

2
y2

)(
x2 − 1− i

√
3

2
y2

)

=

x+

√
1 + i

√
3

2
y

x−

√
1 + i

√
3

2
y

x+

√
1− i

√
3

2
y

x−

√
1− i

√
3

2
y


This gives us the 4 tangent lines x = −

√
1+i
√
3

2 y, x =

√
1+i
√
3

2 y, x = −
√

1−i
√
3

2 y, x =

√
1−i
√
3

2 y.

(c) Let f = y2 − x3 + x, then ∂f
∂x = −3x2 + 1 and ∂f

∂y = 2y. The solutions to these equations are

( 1√
3
, 0) and (− 1√

3
, 0), which are not on the curve. Hence the curve has no singular point.

2.4 The point (a, b) is an ordinary double point if and only if the polynomial from (2.1) is not a square.
We can write the polynomial as

∂2P

∂x∂y
(x− a)(y − b) +

1

2

∂2P

∂x2
(x− a)2 +

1

2

∂2P

∂y2
(y − b)2

=
1

2

(√
∂2P

∂x2
(x− a) +

√
∂2P

∂y2
(y − b)

)2

+

(
∂2P

∂x∂y
−

√
∂2P

∂x2
∂2P

∂y2

)
(x− a)(y − b) ,

where the partial derivatives are all evaluated at (a, b). This is not a square if and only if(
∂2P

∂x∂y

)2

6= ∂2P

∂x2
∂2P

∂y2
.
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2.5 Let C be an affine curve defined by a polynomial P (x, y) of degree d, and let (a, b) be a point of
multiplicity d in C. We first assume by doing a change of coordinates that the point (a, b) is (0, 0).
Since the multiplicity is d, all the partial derivatives of order less than d vanish, which implies that
P is a homogeneous polynomial of degree d in x, y. Thus by Lemma 2.8, P factors as a product of d
linear factors in (x− a), (y − b), and so is the union of d lines through (a, b).

2.7 Let C be a complex algebraic curve in C2 defined by a nonconstant polynomial P (x, y) with complex
coefficients. Then for all but at most finitely many values of a ∈ C, P (a, y) is a nonconstant polynomial
in y, which has at least one root b ∈ C such that P (a, b) = 0. So C is not compact.

2.8 (a) Let P = xy4 + yz4 + xz4. Then

∂P

∂x
= y4 + z4 = 0 ,

∂P

∂y
= 4xy3 + z4 = 0 ,

∂P

∂z
= 4yz3 + 4xz3 = 0 .

From the last equation, we have z3(y + x) = 0, so z = 0 or y = −x. If z = 0, then the first
equation gives y = 0, so the only solution is [1, 0, 0]. Suppose y = −x. Combining the first two
equations gives 4xy3 = y4, so y = 0 or 4x = y. If y = 0, then z = 0 from the first equation, and
x = −y = 0, which is not possible. If 4x = y, then 4x = y = −x, so again x = y = z = 0. Thus
the only singular point is [1, 0, 0], with multiplicity 4.

(b) Let P = x2y3 + x2z3 + y2z3. Then

∂P

∂x
= 2xy3 + 2xz3 = 2x(y3 + z3) = 0 ,

∂P

∂y
= 3x2y2 + 2yz3 = y(3x2y + 2z3) = 0 ,

∂P

∂z
= 3x2z2 + 3y2z2 = 3z2(x2 + y2) = 0 .

If x = 0, then either y = 0 or z = 0, and we get the singular points [0, 0, 1], [0, 1, 0]. Similarly, by
considering the cases where y = 0 or z = 0, we get the singular point [1, 0, 0].

Suppose y, z 6= 0. Then x2 + y2 = 0 and 3x2y + 2z3 = −3y3 − 2y3 = −5y3 = 0, which is a
contradiction. If x, y 6= 0, then y3 + z3 = 0 and 3x2y + 2z3 = 3x2y − 2y3 = 0, so 3x2 = 2y2.
Substituting this into the third equation, we get z = 0, which implies y = 0 and is a contradiction.
Similarly, if x, z 6= 0, then y3+z3 = 0 and x2+y2 = 0. Substituting these into the second equation,
we get y = 0, so x = z = 0 and we have a contradiction.

Thus the singular points are [1, 0, 0], [0, 1, 0], [0, 0, 1], with multiplicities 3, 2, 2 respectively.

(c) Let P = y2z − x(x− z)(x− λz) = y2z − x3 + λx2z + x2z − λxz2. Then

∂P

∂x
= −3x2 + 2λxz + 2xz − λz2 ,

∂P

∂y
= 2yz ,

∂P

∂z
= y2 + λx2 + x2 − 2λxz .

From the second equation, we have y = 0 or z = 0. If z = 0, then x = 0 and y = 0, which is not
possible. If y = 0, we get from the last equation that x(λx + x − 2λz) = 0. Then either x = 0,
which can only happen if λ = 0, or (λ+ 1)x = 2λz. This gives us the singular point [2λ, 0, λ+ 1]
of multiplicity 2.

(d) Let P = xn + yn + zn, then ∂P
∂x = nxn−1, ∂P

∂y = nyn−1, ∂P
∂z = nzn−1, which has no solution in P2.

Thus there are no singular points.

2



3.1 Let C,D be projective curves in P2 with no common component, defined by the polynomials P (x, y, z)
and Q(x, y, z) respectively. Then the singular points of C ∪D are defined by the vanishing of the first
partial derivatives of PQ with respect to x, y, z. Since ∂

∂x (PQ) = P ∂
∂xQ+Q ∂

∂xP , this vanishes on C∩D.

Moreover, it also vanishes on the singularities of C, since these are the points where P = ∂
∂xP = 0, and

similarly it vanishes on the singularities of D. The same holds for the partial derivatives with respect
to y, z. So the singularities of C ∪D are the singularities of C,D and the points in C ∩D.

By Corollary 3.10, an irreducible projective curve in P2 has at most finitely many singular points. Any
projective curve C in P2 defined by a polynomial with no repeated factors is a union of irreducible
curves, and the singularities of C would be the union of the singularities of each of the irreducible
curves and the points of their intersection. Since each irreducible curve has finitely many singular
points, and they intersect in finitely many points, hence C has finitely many singular points.

3.6 Consider the two projective curves of degree three defined by L21L32L13 and L12L23L31, and let the
defining polynomials be P and Q respectively. They intersect in the points p1, p2, p3, q1, q2, q3, as well
as the three points of intersection of the pairs of lines Lij and Lji, which we will call r1, r2, r3.

Let [a, b, c] be the point of intersection of L and M , and take the curve of degree 3 defined by λP +µQ,
where λ = Q(a, b, c) and µ = −P (a, b, c). This curve meets L ∪M in at least 7 points, so by Bézout’s
theorem, they must have a common component, which must be one of the lines L or M . Without
loss of generality, we assume that it is L. Let R1, R2 be the defining polynomials of L,M respectively.
Then λP + µQ = R1S for some polynomial S of degree 2, where S vanishes on q1, q2, q3, r1, r2, r3.

We apply Bézout’s theorem again as follows. Since the curve defined by S has degree 2 and meets M
in at least 3 points, they must have a common component, which must be M since it is irreducible. So
S is a product of two lines, defined by R2 and some other polynomial R3. Then the 3 points r1, r2, r3,
which do not lie on L and M , must lie on the line defined by R3.
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