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A conic is a curve of the form a12? + asxy + aszz + asy® + asyz + agz2, and has 6 coefficients, thus
the space of conics is 5-dimensional. Given 5 points in P?, each point specifies a linear constraint on
the coefficients, and since there are 5 dimensions, we can solve the system of equations to find a conic
containing the 5 points.

Let C be a projective curve of degree 4 in P? with four singular points. Let D be a conic containing
the 4 singular points and another point of C'. By Bézout’s theorem, if the two curves have no common
component, then they have 8 points of intersection counting multiplicities. Since the 4 singular points
have multiplicity greater than 1, and C' and D have an additional point of intersection, hence the sum
of the intersection multiplicities is at least 9. Thus C and D must have a common component, which
implies C is reducible.

Let C be a projective curve in P? defined by a homogeneous polynomial P, let a be a linear trans-
formation, and let @ = P o a~!. We label the coordinates on P by x1, 2,23 and the coordinates
on Q by v1,v2,v3, such that a=t(vy,v2,v3) = (21,%2,73). To compute the derivative of @ at some
v € C3—{0}, we use the chain rule to get g—g = gai gﬁi + g—:;gﬁf + %%3’ fori=1,2,3. Since o' is

a linear transformation, it is given by some matrix, and gi? is the (4, 7)-th entry of the matrix. So we
J

get that the gradient of @) evaluated at v (as a column vector), is equal to the gradient of P evaluated
at a~!(v), multiplied on the left by the transpose of the matrix of a~!.

Applying the chain rule again, we get that the matrix of second derivatives of @ at v is the matrix of
second derivatives of P at a~!(v), multiplied on the right and the left by the matrix of a~! and its
transpose respectively. By taking determinants, we get the desired identity on the Hessians.

This implies that if the Hessian of a polynomial vanishes at a point, it also vanishes after a linear
transformation, so the definition of an inflection point is invariant under projective transformations.

By Corollary 3.34, there is a projective transformation taking p to [0,1,0] and taking C to a curve of
the form y?z = x(x — 2)(x — A\z), where A € C, A # 0,1. We compose this with the transformation
A1

T Sy = %y, to get the equation
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So we have g2 = 3(A?=A+1) and g3 = 4(£A* — §A% — tA+ ). Then g5 —27(g3)? = 16A*(A—1)2 £ 0
since A # 0, 1.

Suppose that C' and D meet in exactly 9 points pi,...,py. Suppose that some line L in P? contains 4
of these points. By Bézout’s theorem, a line and a cubic and only meet in 3 points unless they have
a common component, thus C' must contain L as a component. Applying the same argument to D,
this implies that C' and D both contain L, and so cannot meet in exactly 9 points. Hence this is a
contradiction, and no line in P2 can contain four of the points.

Similarly, a conic can only meet a cubic in 6 points unless they have a common component. So if a conic
meets C' in 7 points, it must have a common component with C, and similarly for D. Moreover, this
must be the same component, so C' and D cannot meet in exactly 9 points. Hence no conic contains
seven of the points.
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From exercise 3.3, there is at least one conic containing pq,...,ps. Moreover, since no line contains
four of these, this conic @ is unique.

Suppose that E contains pq,...,ps and that R is not a linear combination of P and Q). Let ¢,r be
distinct points in P2, Then we can find a curve C defined by AP + uQ + vR = 0, with A\, u,v € C,
which passes through pq,...,ps,q,r. We do this by substituting ¢, r into the equation to get two linear
equations in A, i, v, which we can solve for a solution with nonzero A, u, v.

Suppose that pg lies in the line L through pg, p7, and choose ¢ € L, r € L U Q. Then C contains
the four points pg, p7,ps,q € L, so by Bézout’s theorem, C' contains L as a component. So C' is the

union of L and a conic, which must be @ since @ is the unique conic containing p1,...,ps. This is a
contradiction since r € L U @, so pg, p7, ps cannot lie on a line. Applying the same argument to the
other points, we deduce that no three of py,...,psg lie on a line.

If ps ¢ @, and ¢,r € L, then by the same argument we can show that C = L U @, which is a
contradiction. Similarly, we get a contradiction assuming pg € @, or p; € Q. Thus we deduce that
P, P7, P8 € Q. This implies that () contains 8 points of the points, which contradicts our proof earlier
that no conic contains seven of the points. So the original hypotheses on E were inconsistent. Hence if
E contains pq,...,ps, then R must be a linear combination of P and @, such that E also contains pg.

Since D = Ly U Ms U L3, D meets C in the points where each of the lines in D meets C, which are
p,q,—(p+q) for Ly, po, g+, —(q+7r) for My and r, p+q, —((p+q)+r) for Ls. So D meets C' in the points
P0,D, 4,7, P+q, g+7, —(p+q), —(q+7), —((p+q)+7), which we label as p1, . .., pg respectively. Similarly,
we can check that E meets C' in the points po,p, ¢, 7, p+q,q9+7, —(p+q),—(g+7), —(p+ (¢+7)), which
are pi,...,ps and a ninth point which we label p§. We apply the result from Exercise 3.13 as follows.
Since C' and D meet in exactly the nine points p1,...,pg, and E contains ps, ..., ps, by Exercise 3.13,
E also contains pg. Moreover, since E meets C' in exactly nine points, hence py = pg, which implies
(p+q)+r=p+(g+r).

Let p be a point of inflection of a nonsingular cubic curve C in P2. Then by Remark 3.35, there is a
projective transformation taking p to [0, 1, 0] and taking C to a curve y*z = x(x — z)(z — A\z) for some
A€ C—{0,1}. Let f = y?2—x(x—2)(x—\z). To compute the tangent lines to C which pass through p,
we first solve for the points [a, b, ¢] where %(m b, c)~0+g—£(a, b, c)-l—i—%(a, b,c)-0 = g—i(a, b,c) = 0. This
implies 2yz = 0. If y = 0, then z = 0, z = z or © = Az, which gives us the points [0, 0, 1], [1, 0, 1], [\, 0, 1]
respectively. If z = 0, then = 0 and we have the point [0, 1,0]. Hence there are exactly four tangent
lines to C' which pass through p, which are the four tangent lines to C' at these points.



