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4.1 Let C,D be nonsingular projective curves of degrees n and m in P2. Suppose that C is homeomorphic
to D. By the degree-genus formula, 1

2 (n − 1)(n − 2) = 1
2 (m − 1)(m − 2). Hence either n = m or

{n,m} = {1, 2}.

4.2 Let C be a nonsingular projective curve in the projective plane not containing [0, 1, 0], defined by a
homogeneous polynomial P (x, y, z). Let φ : C → P1 be defined by φ[x, y, z] = [x, z]. Suppose that C
has degree d > 1. Since [0, 1, 0] 6∈ C, the coefficient of yd in P (x, y, z) is nonzero, so ∂P

∂y (x, y, z) is not
identically zero and has degree d− 1, thus defining a projective curve D of degree d− 1. By Theorem
3.8, C and D intersect in at least one point, so by Remark 4.4(ii), φ has at least one ramification point.

Suppose d = 1. Then the coefficient of y in P (x, y, z) is nonzero and is a constant, so ∂P
∂y (x, y, z) is

never zero, so by Remark 4.4(ii), φ has no ramification points and is a homeomorphism.

4.3 Let P (x, y, z) = y2z − x3 be the polynomial defining D. To compute the singular points, we solve the
system of equations ∂P

∂x = −3x2 = 0, ∂P
∂y = 2yz = 0, ∂P

∂z = y2 = 0 for the unique solution [0, 0, 1].

Let f : P1 → D be the map defined by f [s, t] = [s2t, s3, t3]. We can define an inverse map by sending
[x, y, z] 7→ [y, x] for x, y 6= 0, since [s3, s2t] = [s, t], and [0, 0, 1] 7→ [0, 1]. Thus f is a homeomorphism,
which means that D has genus 0, contradicting the degree-genus formula which implies that the genus
should be 1. Hence the degree-genus formula cannot be applied to singular curves in P2.

4.4 Let C be the quartic curve in P2 defined by yz3 = (x + z)4, and let D be the line in P2 defined by
z = 0. Then the map f : D → C defined by [s, t, 0] 7→ [st3, (s+ t)4, t4] is a homeomorphism, where we
can define an inverse map by [x, y, z] 7→ [x, z, 0] for x, z 6= 0 and [0, 1, 0] 7→ [1, 0, 0].

This does not contradict exercise 4.1 since the quartic curve C is singular. Indeed, if we let P (x, y, z) =
yz3−(x+z)4 be the polynomial defining C, then we can solve the system of equations ∂P

∂x = −4(x+z)3 =

0, ∂P
∂y = z3 = 0, ∂P

∂z = 3yz2 − 4(x+ z)3 = 0, to get the singular point [0, 1, 0].

4.5 Let C be an irreducible projective cubic curve in P2 with a singular point p. By making a projective
transformation, we may assume that p is the point [0, 0, 1]. Then by Exercise 3.9, C is equivalent under
a projective transformation to y2z = x3 or y2z = x2(x + z). We identify P1 with the set of lines in
P2 which pass through p, and define the map f : P1 → C by mapping a line L through p to p if it is
tangent to C at p, otherwise to the unique other point of intersection of L with C.

If C is a cuspidal cubic, then p is in the image of f since the line y = 0 is tangent to C at p. For
any other point [a, b, c] on C, the line L through [a, b, c] and p is of the form bx − ay = 0. So we can
write the map f as f [s, t] = [−t, s,−t3/s2] = [−s2t, s3,−t3], which is a homeomorphism by the same
argument as in Exercise 4.3.

If f is a nodal cubic, then the lines y = x, y = −x are tangent to C at p. So f maps the two points
[1, 1] and [1,−1] to p. For the other points of P1, we can write f as f [s, t] = [−t, s, t3/(t2 − s2)], and
we can define an inverse map by sending [x, y, z] 7→ [y,−x]. So f is a continuous bijection and hence
a homeomorphism away from p.
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