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Let R be a compact connected Riemann surface. Suppose that there is a nonconstant holomorphic
function f : R — C. Then f extends to a holomorphic function to P!, which by Exercise 5.3 is
surjective. Hence the image of f must contain co, which is a contradiction.

Let f : C — C be a holomorphic doubly periodic function, with periods wy, we, and let A = {nw;+mws :
n,m € Z}. By Example 5.42, f corresponds to a holomorphic function h : C/A — C. Since C/A is
a compact connected Riemann surface, Exercise 5.4 implies that h is constant. So f must also be
constant.

Let ¢ : C/A — P! be defined by (A + 2) = p(z). Consider the holomorphic atlas on P! given by the
charts 91 : W1 — C, 99 : Wo — C, where W; = P! — {co} and Wy = P! — {0}, such that v [z,y] = 2 /y
and sz, y] = y/x (see Example 5.40(d)).

Let # : C — C/A be the map z — A + z. Consider the holomorphic charts on C/A given by
bo = (7l,) 71 1 7(Us) — Uy, like in Example 5.42.

For A + z € C/A, take holomorphic charts ¢, ¥; such that A + z € U, and @(A + z) € W;. To show
that ¢ is holomorphic, we check that ¥; o g o ¢! : ¢o(Us NG 1(W;)) — C is holomorphic. Observe
that po ¢t = gom = p, and U, N G~ 1(W;) is the set of points in U, which are not in A, so g is
holomorphic on 7= (U, N 7L (W;)) = ¢a(Us N G~ (W;)), hence 9; 0 o ¢, is holomorphic. Thus ¢
is holomorphic.

Let £(2) = (p(2) — p(2w1))(p(=) — p(hwn))(9(2) — p(Lws + ws)) and let g(z) = £(2)/¢/(2)%. Since
0, @' have poles of order 2 and 3 respectively at every z € A, and no other poles, hence g is holomorphic
at each z € A. For z € 3A — A, by Lemma 5.13, p(2) = p(5w1) or p(3ws) or p(3w1 + sw2). So f has
zeros at each z € %A — A, and these zeros have order 2. Since p’ has a simple zero at each of these
points, hence ¢ is holomorphic at each z € %A — A. Thus g is holomorphic on C, since g’ has no other
zeros. ¢ is also doubly periodic since g, g’ are doubly periodic.

By Exercise 5.9, g is constant, so g(z) = ¢ for some constant c. Thus ¢'(2)? = 1 f(z) = Q(p(2)), where
Qz) = %(z — p(%wl))(az — p(%wg))(z — p(%wl + %WQ)) is a cubic polynomial.

Consider the polynomial f = 42 — go(A)x — g3(A). By the proof of Lemma 5.20, f has distinct roots.
Hence the discriminant of f, which is g2(A)3 — 27¢3(A)?, is nonzero.

Suppose that there is a projective transformation of P2 given by a diagonal matrix taking C' to C,
then this transformation is of the form = — az, y — by, z — cz for a,b,c # 0. We can assume
¢ = 1 since this is a projective transformation. Substituting this into the equation for C', we get
b2y2z = 4a32® — graxz? — g323. Comparing this with the equation for C, we get a® = b2, goa = b2§o
and g3 = b?j3. We reparameterize this by letting a = u2, then b = u?, and g» = u*gs, g5 = uj3. So
J(C) = =82 = J(O).

ul2go—27xul2gg
Conversely, suppose J(C') = J(C). Then g3§3 = §3g3, so for some nonzero u we can write (g3/§s)> =
(92/92)% = u'?. Consider a projective transformation of the form x +— w2z, y — u®y; this is given
by a diagonal matrix. Then the equation of C'is mapped to y?z = 4a — (g2/u')z2® — (g3/u’)z® =
4x — Gowz? — G323, so this transformation takes C to C.
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Since C' is nonsingular, there is no point [z,y, z] € C such that %—I; = ‘Z,—I; = %—f = 0, so the image

of C is in P? and is well-defined. Euler’s relation implies that the points in the image satisfy
J;%—J; + y%—lj + z%—lj = 0, so the image is defined by a homogeneous polynomial and is a projective
curve.

Let C be a conic, with defining equation P(x,y, 2) = a12? + asxy + azrz +aqy® +asyz +agz® = 0.
Then g—f = 2a1x + asy + asz, %—5 = asx + 2a4y + a5z, %—1: = a3z + asy + 2agz, so the polar
mapping is linear and is a projective transformation. Hence the dual curve is also a nonsingular

conic.

The polar mapping from C to C is defined by polynomials and so is holomorphic. Suppose the
degree of C' is at least 3. By Proposition 3.33(ii), C' has at least one point of inflection. Since
points of inflection correspond to cusps on the dual curve, hence C has a cusp, and so there is no
holomorphic inverse.



