Math 255 Homework 4

19 Feb, 2019

- 5.4 Let R be a compact connected Riemann surface. Suppose that there is a nonconstant holomorphic function $f : R \to \mathbb{C}$. Then f extends to a holomorphic function to \mathbb{P}^1 , which by Exercise 5.3 is surjective. Hence the image of f must contain ∞ , which is a contradiction.
- 5.9 Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic doubly periodic function, with periods ω_1, ω_2 , and let $\Lambda = \{n\omega_1 + m\omega_2 : n, m \in \mathbb{Z}\}$. By Example 5.42, f corresponds to a holomorphic function $h : \mathbb{C}/\Lambda \to \mathbb{C}$. Since \mathbb{C}/Λ is a compact connected Riemann surface, Exercise 5.4 implies that h is constant. So f must also be constant.
- 5.10 Let $\tilde{\wp} : \mathbb{C}/\Lambda \to \mathbb{P}^1$ be defined by $\tilde{\wp}(\Lambda + z) = \wp(z)$. Consider the holomorphic atlas on \mathbb{P}^1 given by the charts $\psi_1 : W_1 \to \mathbb{C}, \ \psi_2 : W_2 \to \mathbb{C}$, where $W_1 = \mathbb{P}^1 \{\infty\}$ and $W_2 = \mathbb{P}^1 \{0\}$, such that $\psi_1[x, y] = x/y$ and $\psi_2[x, y] = y/x$ (see Example 5.40(d)).

Let $\pi : \mathbb{C} \to \mathbb{C}/\Lambda$ be the map $z \mapsto \Lambda + z$. Consider the holomorphic charts on \mathbb{C}/Λ given by $\phi_{\alpha} = (\pi|_{U_{\alpha}})^{-1} : \pi(U_{\alpha}) \to U_{\alpha}$, like in Example 5.42.

For $\Lambda + z \in \mathbb{C}/\Lambda$, take holomorphic charts ϕ_{α} , ψ_i such that $\Lambda + z \in U_{\alpha}$ and $\tilde{\wp}(\Lambda + z) \in W_i$. To show that $\tilde{\wp}$ is holomorphic, we check that $\psi_i \circ \tilde{\wp} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap \tilde{\wp}^{-1}(W_i)) \to \mathbb{C}$ is holomorphic. Observe that $\tilde{\wp} \circ \phi_{\alpha}^{-1} = \tilde{\wp} \circ \pi = \wp$, and $U_{\alpha} \cap \tilde{\wp}^{-1}(W_i)$ is the set of points in U_{α} which are not in Λ , so \wp is holomorphic on $\pi^{-1}(U_{\alpha} \cap \tilde{\wp}^{-1}(W_i)) = \phi_{\alpha}(U_{\alpha} \cap \tilde{\wp}^{-1}(W_i))$, hence $\psi_i \circ \tilde{\wp} \circ \phi_{\alpha}^{-1}$ is holomorphic. Thus $\tilde{\wp}$ is holomorphic.

Let $f(z) = (\wp(z) - \wp(\frac{1}{2}\omega_1))(\wp(z) - \wp(\frac{1}{2}\omega_2))(\wp(z) - \wp(\frac{1}{2}\omega_1 + \frac{1}{2}\omega_2))$ and let $g(z) = f(z)/\wp'(z)^2$. Since \wp, \wp' have poles of order 2 and 3 respectively at every $z \in \Lambda$, and no other poles, hence g is holomorphic at each $z \in \Lambda$. For $z \in \frac{1}{2}\Lambda - \Lambda$, by Lemma 5.13, $\wp(z) = \wp(\frac{1}{2}\omega_1)$ or $\wp(\frac{1}{2}\omega_2)$ or $\wp(\frac{1}{2}\omega_1 + \frac{1}{2}\omega_2)$. So f has zeros at each $z \in \frac{1}{2}\Lambda - \Lambda$, and these zeros have order 2. Since \wp' has a simple zero at each of these points, hence g is holomorphic at each $z \in \frac{1}{2}\Lambda - \Lambda$. Thus g is holomorphic on \mathbb{C} , since \wp' has no other zeros. g is also doubly periodic since \wp, \wp' are doubly periodic.

By Exercise 5.9, g is constant, so g(z) = c for some constant c. Thus $\wp'(z)^2 = \frac{1}{c}f(z) = Q(\wp(z))$, where $Q(x) = \frac{1}{c}(x - \wp(\frac{1}{2}\omega_1))(x - \wp(\frac{1}{2}\omega_2))(x - \wp(\frac{1}{2}\omega_1 + \frac{1}{2}\omega_2))$ is a cubic polynomial.

- 5.12 Consider the polynomial $f = 4x^3 g_2(\Lambda)x g_3(\Lambda)$. By the proof of Lemma 5.20, f has distinct roots. Hence the discriminant of f, which is $g_2(\Lambda)^3 - 27g_3(\Lambda)^2$, is nonzero.
- 5.14 Suppose that there is a projective transformation of \mathbb{P}^2 given by a diagonal matrix taking C to \tilde{C} , then this transformation is of the form $x \mapsto ax$, $y \mapsto by$, $z \mapsto cz$ for $a, b, c \neq 0$. We can assume c = 1 since this is a projective transformation. Substituting this into the equation for C, we get $b^2 y^2 z = 4a^3 x^3 g_2 a x z^2 g_3 z^3$. Comparing this with the equation for \tilde{C} , we get $a^3 = b^2, g_2 a = b^2 \tilde{g}_2$ and $g_3 = b^2 \tilde{g}_3$. We reparameterize this by letting $a = u^2$, then $b = u^3$, and $g_2 = u^4 \tilde{g}_2, g_3 = u^6 \tilde{g}_3$. So $J(C) = \frac{u^{12} \tilde{g}_2}{u^{12} \tilde{g}_2 27 * u^{12} \tilde{g}_3} = J(\tilde{C})$.

Conversely, suppose $J(C) = J(\tilde{C})$. Then $g_2^3 \tilde{g}_3^2 = \tilde{g}_2^2 g_3^2$, so for some nonzero u we can write $(g_3/\tilde{g}_3)^2 = (g_2/\tilde{g}_2)^3 = u^{12}$. Consider a projective transformation of the form $x \mapsto u^2 x$, $y \mapsto u^3 y$; this is given by a diagonal matrix. Then the equation of C is mapped to $y^2 z = 4x - (g_2/u^4)xz^2 - (g_3/u^6)z^3 = 4x - \tilde{g}_2xz^2 - \tilde{g}_3z^3$, so this transformation takes C to \tilde{C} .

- 5.18 (i) Since C is nonsingular, there is no point $[x, y, z] \in C$ such that $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} = \frac{\partial P}{\partial z} = 0$, so the image of C is in \mathbb{P}^2 and is well-defined. Euler's relation implies that the points in the image satisfy $x\frac{\partial P}{\partial x} + y\frac{\partial P}{\partial y} + z\frac{\partial P}{\partial z} = 0$, so the image is defined by a homogeneous polynomial and is a projective curve.
 - (ii) Let C be a conic, with defining equation $P(x, y, z) = a_1 x^2 + a_2 x y + a_3 x z + a_4 y^2 + a_5 y z + a_6 z^2 = 0$. Then $\frac{\partial P}{\partial x} = 2a_1 x + a_2 y + a_3 z$, $\frac{\partial P}{\partial y} = a_2 x + 2a_4 y + a_5 z$, $\frac{\partial P}{\partial z} = a_3 x + a_5 y + 2a_6 z$, so the polar mapping is linear and is a projective transformation. Hence the dual curve is also a nonsingular conic.
 - (iii) The polar mapping from C to \tilde{C} is defined by polynomials and so is holomorphic. Suppose the degree of C is at least 3. By Proposition 3.33(ii), C has at least one point of inflection. Since points of inflection correspond to cusps on the dual curve, hence \tilde{C} has a cusp, and so there is no holomorphic inverse.