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Let g be a holomorphic function on a Riemann surface S, and let «y : [a,b] — S be a closed piecewise-
smooth path in S. Then by Example 6.14(2), f,y dg = g(v(b)) — g(v(a)) = 0 since ¥(b) = y(a).

Let 1 be the holomorphic differential on C/A satisfying n*n = dz. If we fix some nonzero A € A and
take the piecewise-smooth path v : [0,1] — C/A defined by ~(t) = A + tA, then f,y 7 = A, so 7 is not
exact (see the discussion on page 150 for details).

Let dz be the meromorphic differential on P! = C U {oo}, where we identify z € C with [z, 1] € P! and
oo with [1,0]. Let ¢ : P! —{oco} — C, ¥ : P — {0} — C be holomorphic charts defined by ¢[z,y] = = /vy,
Wlz,y] = y/x. To study the pole at oo, we consider the chart 1, with inverse 1 ~!(2) = [1/z,1] if 2 # 0,
and [1,0] if z = 0. Since the meromorphic function (104 ~1)(z0~!)" = —Z% has a pole of order 2 at
1(00) = 0, hence dz has a pole of order 2 at co.

We can write any meromorphic differential hdg on P! as fdz, where f = hg’ is meromorphic on P!,
Suppose that fdz is holomorphic. Then on the chart ¢, the function (f o ¢~!)(z 0 ¢~1) = f must
be holomorphic. On the chart ¢, the function (f oy~!)(z0v™!) = f(1)(—%) = —w? f(w) must be
holomorphic, where w = % So as w — 00, w? f(w) must tend to a finite limit. Conversely, if these

latter conditions hold then fdz has no poles and is a holomorphic differential.

If fdz is a holomorphic differential on P!, then from the above, f must have a zero of order at least 2 at
oo, and must also be constant, which is a contradiction. Hence there are no holomorphic differentials
on PL.

Let Cp be the nonsingular cubic curve in Py associated with a lattice A, defined by the polynomial
Y2z — 423+ go(A)x2z® +g3(A)23. Let p = [a1, b1, 1] and ¢ = [az, ba, 1] be points of Cy, a1 # asg, and let L
be the line through p, q. By solving a system of linear equations, we can write the defining equation of
L as (by —ba)x+ (a2 —a1)y+ (ar1bs — agby)z = 0. Let r = [as, b3, 1] be the other point of intersection of
L with Cy. To compute agz, we set z = 1 and eliminate y from the equation for C'y using the equation
for L, to get

(a2b1 —aibs + (bg — bl).%‘

a2 — a1

2
) =43 — g2(A)x — g3(A). (1)

This is a cubic polynomial in z, and since the sum of the roots a; + as + as is the coefficient of z?2
divided by 4, we get

a3:i<b1—b2)2_(a1+a2>. @)

ap — az

Substituting this into the equation for L, we get

by —b by — ash
b3 _ ( 1 2 ) as + (al 2 a2 1> ] (3)
a; — az ap — az

Let 21,290 &€ A and z1 € A & z5. Then since 21 + 22 — (21 + 22) € A, by Abel’s theorem, there exists a
line L in Py intersecting Cp at w(A+z1), u(A+ 22) and w(A — (21 + 22)). Let a; = p(z;), b; = ©'(z;) for
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i=1,2 and let ag = p(—(21+22)), b3 = p'(—(z1 + 22)). Since p is even, as = E(z1 + 22). Substituting
these into Equation 2, we get

() =9
oo+ = 1 (LEIZEEDY ) (). (@)

If we let z := 21, 22 = z + w and take the limit as w — 0, then we get

a% 2
o2 =1 (Z2) - 2002). )

Let p # [0, 1,0] be a point of the cubic curve Cy associated with a lattice A in C. From Remark 6.22,
p has order 2, or p + p = 0, if and only if the tangent to C'y at p passes through the identity, which is
[0,1,0]. The points of order 1 or 2 correspond under the group isomorphism u : C/A — Cjy to points
of order 1 or 2 in C/A, and there are 4 such points which can be written in the form A + %wl + %wg,
for j,k € {0,1}. These points form a subgroup of C'/A isomorphic to Cy x Cs.

Let n be a positive integer. If p € Cp has order dividing n, then np = 0, which by Abel’s theorem
occurs if and only if nt € A for some ¢ € C such that u(A +t) = p. So the points of order dividing n
correspond to points of order dividing n in C/A, and there are precisely n? such points which can be
written in the form A + Zw; + %wg, where j, k € {0,1,...,n — 1}. These points form a subgroup of
C/A isomorphic to the product of two cyclic groups of order n.

Let ¢ € Ch, such that ¢ is not a point of inflection. Then the points in Cy whose tangent lines pass
through ¢ are the points p such that p + p = —¢q, so that p+p+ ¢ = 0. Let t,v € C such that
u(A+t) = p and u(A 4+ v) = ¢. Then by Abel’s theorem, p + p + ¢ = 0 if and only if 2t +v € A, or
te %A — %v. So there are exactly four possibilities for ¢, which are t = %wl + gwg — %v, j,k €{0,1},
and these correspond to the four points in Cy other than ¢ whose tangent lines pass through q.

Let u,v,w € C — A, such that w, v, w are distinct modulo A. By Abel’s theorem, u + v+ w € A if and
only if there is a line L in P? which intersects Cy at [p(u), ¢’ (u), 1], [p(v), @' (v), 1] ,[p(w), ¢’ (w), 1],
which happens if and only if

pu) @' (u) 1
det | p(v) p'(v) 1] =0
pw) o'(w) 1



