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6.1 Let g be a holomorphic function on a Riemann surface S, and let γ : [a, b]→ S be a closed piecewise-
smooth path in S. Then by Example 6.14(2),

∫
γ
dg = g(γ(b))− g(γ(a)) = 0 since γ(b) = γ(a).

Let η be the holomorphic differential on C/Λ satisfying π∗η = dz. If we fix some nonzero λ ∈ Λ and
take the piecewise-smooth path γ : [0, 1] → C/Λ defined by γ(t) = Λ + tλ, then

∫
γ
η = λ, so η is not

exact (see the discussion on page 150 for details).

6.3 Let dz be the meromorphic differential on P1 = C∪ {∞}, where we identify z ∈ C with [z, 1] ∈ P1 and
∞ with [1, 0]. Let φ : P1−{∞} → C, ψ : P1−{0} → C be holomorphic charts defined by φ[x, y] = x/y,
ψ[x, y] = y/x. To study the pole at∞, we consider the chart ψ, with inverse ψ−1(z) = [1/z, 1] if z 6= 0,
and [1, 0] if z = 0. Since the meromorphic function (1 ◦ ψ−1)(z ◦ ψ−1)′ = − 1

z2 has a pole of order 2 at
ψ(∞) = 0, hence dz has a pole of order 2 at ∞.

We can write any meromorphic differential hdg on P1 as fdz, where f = hg′ is meromorphic on P1.
Suppose that fdz is holomorphic. Then on the chart φ, the function (f ◦ φ−1)(z ◦ φ−1)′ = f must
be holomorphic. On the chart ψ, the function (f ◦ ψ−1)(z ◦ ψ−1) = f( 1

z )(− 1
z2 ) = −w2f(w) must be

holomorphic, where w = 1
z . So as w → ∞, w2f(w) must tend to a finite limit. Conversely, if these

latter conditions hold then fdz has no poles and is a holomorphic differential.

If fdz is a holomorphic differential on P1, then from the above, f must have a zero of order at least 2 at
∞, and must also be constant, which is a contradiction. Hence there are no holomorphic differentials
on P1.

6.5 Let CΛ be the nonsingular cubic curve in P2 associated with a lattice Λ, defined by the polynomial
y2z−4x3 +g2(Λ)xz2 +g3(Λ)z3. Let p = [a1, b1, 1] and q = [a2, b2, 1] be points of CΛ, a1 6= a2, and let L
be the line through p, q. By solving a system of linear equations, we can write the defining equation of
L as (b1− b2)x+ (a2−a1)y+ (a1b2−a2b1)z = 0. Let r = [a3, b3, 1] be the other point of intersection of
L with CΛ. To compute a3, we set z = 1 and eliminate y from the equation for CΛ using the equation
for L, to get (

a2b1 − a1b2 + (b2 − b1)x

a2 − a1

)2

= 4x3 − g2(Λ)x− g3(Λ) . (1)

This is a cubic polynomial in x, and since the sum of the roots a1 + a2 + a3 is the coefficient of x2

divided by 4, we get

a3 =
1

4

(
b1 − b2
a1 − a2

)2

− (a1 + a2) . (2)

Substituting this into the equation for L, we get

b3 =

(
b1 − b2
a1 − a2

)
a3 +

(
a1b2 − a2b1
a1 − a2

)
. (3)

Let z1, z2 6∈ Λ and z1 6∈ Λ± z2. Then since z1 + z2 − (z1 + z2) ∈ Λ, by Abel’s theorem, there exists a
line L in P2 intersecting CΛ at u(Λ+z1), u(Λ+z2) and u(Λ− (z1 +z2)). Let ai = ℘(zi), bi = ℘′(zi) for
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i = 1, 2 and let a3 = ℘(−(z1 + z2)), b3 = ℘′(−(z1 + z2)). Since ℘ is even, a3 = ℘(z1 + z2). Substituting
these into Equation 2, we get

℘(z1 + z2) =
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2) . (4)

If we let z := z1, z2 = z + w and take the limit as w → 0, then we get

℘(2z) =
1

4

(
℘′′(z)

℘′(z)

)2

− 2℘(z) . (5)

6.6 Let p 6= [0, 1, 0] be a point of the cubic curve CΛ associated with a lattice Λ in C. From Remark 6.22,
p has order 2, or p+ p = 0, if and only if the tangent to CΛ at p passes through the identity, which is
[0, 1, 0]. The points of order 1 or 2 correspond under the group isomorphism u : C/Λ → CΛ to points
of order 1 or 2 in C/Λ, and there are 4 such points which can be written in the form Λ + j

2ω1 + k
2ω2,

for j, k ∈ {0, 1}. These points form a subgroup of C/Λ isomorphic to C2 × C2.

6.7 Let n be a positive integer. If p ∈ CΛ has order dividing n, then np = 0, which by Abel’s theorem
occurs if and only if nt ∈ Λ for some t ∈ C such that u(Λ + t) = p. So the points of order dividing n
correspond to points of order dividing n in C/Λ, and there are precisely n2 such points which can be
written in the form Λ + j

nω1 + k
nω2, where j, k ∈ {0, 1, . . . , n − 1}. These points form a subgroup of

C/Λ isomorphic to the product of two cyclic groups of order n.

Let q ∈ CΛ, such that q is not a point of inflection. Then the points in CΛ whose tangent lines pass
through q are the points p such that p + p = −q, so that p + p + q = 0. Let t, v ∈ C such that
u(Λ + t) = p and u(Λ + v) = q. Then by Abel’s theorem, p + p + q = 0 if and only if 2t + v ∈ Λ, or
t ∈ 1

2Λ− 1
2v. So there are exactly four possibilities for t, which are t = j

2ω1 + k
2ω2 − 1

2v, j, k ∈ {0, 1},
and these correspond to the four points in CΛ other than q whose tangent lines pass through q.

6.8 Let u, v, w ∈ C− Λ, such that u, v, w are distinct modulo Λ. By Abel’s theorem, u+ v +w ∈ Λ if and
only if there is a line L in P2 which intersects CΛ at [℘(u), ℘′(u), 1], [℘(v), ℘′(v), 1] ,[℘(w), ℘′(w), 1],
which happens if and only if

det

℘(u) ℘′(u) 1
℘(v) ℘′(v) 1
℘(w) ℘′(w) 1

 = 0 .
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