
Exploring Algebra with GrafEq

Introduction

It is our hope that those with an interest in elementary mathematics will be able to 
deepen and broaden their understanding of the subject through familiarity with 
GrafEq. The naive user of mathematical technology such as the calculator may 
believe that the use of such technology is limited to providing an answer. This is 
indeed the typical application of the scientific calculator. However, an additional 
application is that of verifying a result arrived at by standard analytic methods. The 
technology then serves the role of an independent mechanical checker. In order to 
satisfy this role, it is necessary that the user have some faith in the validity of the 
program. The software should not suffer from arbitrary limitations, nor should it 
provide inaccurate results.

An example is in order: suppose we hypothesize that a point has an equation and it is 
simply the equation of a circle with radius 0. In order to verify this via the software, it 
is necessary that the software be capable of plotting a single point. GrafEq can plot 
single points - and would indeed support this hypothesis.

A further example: if a student were to surmise that the graph of x=|x| consists of 
quadrants I and IV over the x-y plane, (s)he could affirm this with GrafEq. This is 
possible only because GrafEq can plot relations of a single variable - a capability not 
typical of computer graphing software.

The user should also be aware of the inherent limitations of any physical 
representation of a mathematical entity. The computer screen provides a model of a 
region of the geometric plane, whereby dots in the form of pixels serve to represent 
geometric points. Pixels, like dots, have area - and therefore contain many points. An 
implication of this property: the graph of a complete line will appear identical to the 
graph of that line with a single point deleted, sometimes called a ‘point discontinuity’.

Most of the concepts discussed in this booklet can be included within the branch of 
algebra called analytic geometry, wherein geometric constructs are described 
algebraically by equations and inequalities. Many of the topics are standard fare of a 
high school algebra class. However, some of the topics are enrichment. Whether or 
not the reader is a student, (s)he will benefit from considering atypical application of 
graphing software.

Pedagoguery Software welcomes comments and questions about both GrafEq and 
mathematics and invites you to contact us by e-mail at peda@peda.com

Graphics that appear unclear on screen will usually be accurate when printed.
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I   Points, Lines, Segments and Rays

The basic building block of traditional geometry is the point. Many mathematics texts 
do not formally define the point. Instead, they specify properties of points. Such as: 
between any two distinct points, there is a third point, or associated with any pair of  
points, there is a non-negative number, called the distance between the points.

The Cartesian coordinate system allows for a convenient bridge connecting geometry 
and algebra. Such a coordinate system consists of two real number lines intersecting 
perpendicularly at their zero coordinates. The intersection is called the origin. These 
lines, called axes, are aligned so that the horizontal (x-) axis increases left to right and 
the vertical (y-) axis increases from bottom to top. The four regions of this partitioned 
plane are called quadrants, and are numbered I through IV counter-clock wise, where 
quadrant I is ‘top-right’.

fig. 1 Cartesian coordinate system

The major advantage of this coordinate system lies in our ability to specify a point’s 
location by two coordinates: the x-coordinate is the point’s horizontal position with 
respect to the origin, and the y-coordinate is the point’s vertical position. E.g. a point 
with x-coordinate 3 and y-coordinate -5 would be in quadrant IV, directly below 3 on 
the x-axis and beside -5 on the y-axis. The coordinates would be specified as the 
ordered-pair (3,-5), since the x-coordinate is written first and is followed by the y-
coordinate.

Now - the question we ask ourselves: “Is there an equation whose graph consists of 
the single point (3,-5)?” We can, obviously, use GrafEq’s constraint capability and 
enter the two constraint relation: x=3;y=-5. Which is equivalent to saying “x=3 and 
y=-5”. But, is there a single equation whose solution is (3,-5)?

If we recall the definition of absolute value, then we might consider: |x-3|+|y+5| = 0. 
For this equation to hold, |x-3| and |y+5| must be opposites. But since neither can be 
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negative, each must be zero. Which implies x is 3 and y is -5. GrafEq will confirm 
that we have indeed found an equation of P(3,-5). The absolute value method is not 
the only way to create an equation of a point. An alternative method consists of 
creating a circle of radius zero. Convince yourself, with GrafEq, that 
(x-3)2 + (y+5)2=0 is an alternative equation of the point. Are there other equations 
whose solution consists of (3,-5)?

Now, the equation of a line is much simpler, since it is included in the course work. 
Most students are aware of slope-intercept form: y=mx + b, where m is the slope of 
the line, and b is its y-intercept. The graph of y = 2x - 5 consists of the line with slope 
2 which intersects the y-axis at (0,-5). Are their any lines of the x-y plane which 
cannot be described using slope-intercept?

It is not necessary to use this form exclusively. Consider the line passing through (4,5) 
and (6,3). The following 

  when entered into GrafEq’s relation window appears to provide the desired line. 
However, if we examine the equation carefully, we note that x cannot be 4 or 6.1 The 
correct graph is the line minus two points. The above equation is an example of the 2-
point form of a linear equation, whereby the line through (a,b) and (c,d) can be 
expressed as:

A third form, the point-slope form is used to create the equation of the line with slope 
m, that passes through (a,b) : y-b = m(x - a).

The above forms have some deficiencies: either a problem with vertical lines (which 
have no slope) or they do not define the whole line.

A fourth form, sometimes called general form : Ax + By = C has the advantage that it 
can properly define any line, but this form has no simply obvious geometric 
properties.

We have looked at examples of lines determined by points that belong to the desired 
line. Now, as an exercise: can you determine a general equation of the perpendicular  
bisector of the segment connecting (a,b) and (c,d). (hint: the slopes of non-vertical 
perpendicular lines multiply to -1). Use GrafEq to test your solution by using the 
points (-1,2) and (5,4). Your solution line should overlap the line: y = -3x + 9.

Now, what about segments? Since segments are parts of lines, perhaps we can 
determine a segment’s equation from the equation of its line. Suppose we wish to 
determine an equation of the segment PQ, where P(0,1) is one end, and Q(4,9) is the 
other end. An equation of the line through the points is y = 2x + 1. Now, if we were to 

1 Easily resolved by using the nearly equivalent cross-product: (y-5)(x-6)=(y-3)(x-4).
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multiply one term by 

What would be the effect? 

As long as x < 4 there will be no problem. We now have a ray from Q through P. We 
can continue by similarly multiplying by 

which similarly restricts x to be positive.

fig.2 graph of 

Note the extraneous vertical material at the end point Q(4,9). GrafEq has not yet 
determined that points near the end are - or are not solution points. If you select the 
Information view tool - relation 1 and turn on Show work it becomes obvious that the 
program is not yet decided on the status of these points.2

The foregoing method is based on the simple concept of domain restriction. We have 
multiplied by a fraction that is equal to one - provided x is between 0 and 4. Indeed, 
unless x is between these values, the whole expression is not valid.

Is this the only way to arrive at the equation of a segment? Let us examine the notion 
of between-ness: The points of segment PQ are those points p between P and Q.  And 
this can be expressed algebraically by saying the distance from P to p plus the 
distance from p to Q add to the total distance from P to Q. The total equals the sum of  
the parts. Now, we can use the distance formula for points on the x-y coordinate 
system:
2Note that simply graphing the segment can be done easily by GrafEq’s conditional capability: 
y={2x+1  if 0<x < 4}
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The distance between (a,b) and (c,d) = 

So, if we put our point (x,y) between P and Q, our equation will be:

where 4 5  is the distance from P to Q.
Note that the graphing side-effects of this method are different from those of the 
preceding method.

fig. 3 Graph of segment defined via distance formula
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II   Angles, Triangles, Unions and Intersections

We have seen how to derive equations of points, rays, segments and lines. We note
that an angle is the union of two rays and a triangle is the union of three segments.
How can we derive an equation for a union?

Let us first consider a slightly simpler case: the ‘X’ formed by the union of the lines: 
y = x and y = -x + 1.

Our equation: (y - x)(y + x - 1) = 0 See fig.4

fig.4 (y - x)(y + x - 1) = 0

This equation was derived by using the well-known property a=0 or b=0 iff ab=0, 
where the ‘iff’, pronounced “if and only if” means simply that each side implies the 
other. Now, if we re-write y = x to y - x = 0 and y = -x + 1 to y + x - 1 = 0 we have 
expressions in the form ‘f = 0'. These expressions can only be true if (and only if) the 
product of the left sides is also zero. We can summarize:

The union of the relations f = 0 and g = 0 is the relation fg = 0.

If we reflect back, on our technique for determining the equation of a point, we will 
realize that we intersected two lines to determine a point. We can similarly
summarize:

The intersection of f = 0 and g = 0 is the relation |f| + |g| = 03

So, an equation of an angle might be:

which is the union of two lines, with domain restricted, leaving an angle.4 Now, can 

3 Or f2+g2=0, etc.
4 More precisely, an angle minus its vertex.
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we create an equation of the triangle A(0,0)B(1,2)C(2,1)? Is it not simply the union of 
three segments?
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fig. 5 a triangle and its equation

As an exercise, determine an equation of the square A(0,0)B(1,0)C(1,1)D(0,1) and 
confirm your solution by graphing your equation with GrafEq.

An aside: since we now realize that points have equations, and we can graph the 
union of any number of points, then this implies that a (monochrome) newspaper 
photo has a defining equation! Since, upon close examination, we see that the photo is 
simply a collection of dots. Needless to say, ‘zooming’ in to a graph so defined will 
not be the same as enlarging a photo, insofar as the graph’s ‘points’ will separate - 
whereas a photo’s ‘dots’ would appear larger.
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III   Polynomials

The following may be referred to as polynomial functions:
y = 3x2- x + 1 (degree 2)
y= x5 + x3(degree 5)
y = -x7+ x6 -x -1 (degree 7)
The degree is the highest power of x. Below in fig. 6 we see the graph of a ‘cubic'  
(i.e. Degree 3)

fig.6 The cubic: y=-x3+2x+1

The above equation is said to determine a function, since, for any particular x-value, 
there is no more than one y-value. A ‘graphical’ definition of a function: “A curve is 
the graph of a function, if no vertical line intersects the curve more than once.” This 
is often referred to as the ‘vertical line test’ for functions. We are often interested in 
‘intercepts’: the y-intercept, which has already been mentioned, alludes to the point 
where a curve intersects the y-axis. Similarly, an x-intercept is determined by the 
intersection of the curve with the x-axis. In fig.6 above, there appears to be a single y-
intercept at 1, and three x-intercepts: at -1, near -.5 and near 1.7. The x-intercepts are 
often referred to as ‘zeros’ since they denote x-values of those points with 
y-coordinates of zero.

Is there a relation between the degree of a function, and the number of zeroes? Use 
GrafEq to graph a number of functions of odd degree (such as y =2x + 1, y= x5-3x2+2 
and y= x7- x6

 + 2x3 -6 etc.) Do any of them appear to not have any zeros? Now, use 
GrafEq to graph some functions of even degree. (Such as y=2x2+ 1, 
y=-x4 – x3 +2x -3 etc.) You should note that by modifying the constant term, it is 
possible to ‘move’ the graph so that there are no zeros at all.

In general, a polynomial equation of degree n may have up to n zeros and if the degree 
is odd, there must be at least one zero.
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Now, there is a similar set of terms: even or odd functions, which should not be 
confused with functions of even or odd degree. An even polynomial is one in which 
all x-terms are of even power: e.g. y = 2x8 - x6 + x2 + 3 and y = 5x10 - 3x6 ; whereas an 
odd function is one with all x-terms of odd power: e.g. y = 4x7 - 2x5 - x and 
y = x11 - x3 + x

Fig.7 below illustrates an even function. We note that there is axial symmetry.

fig.7 Even function

fig. 8 Odd function
The axis of symmetry of the even function is the y-axis. Every point (a,b) of the 
function has a symmetry point (-a,b). The origin is the point of symmetry of the odd 
function. Each point (a,b) of that function will have a symmetry point (-a,-b).

Do these properties generalize to non-functional relations? Take a few moments to 
graph ‘even’ relations such as y4-3y3=4x6-6x2+1, where we restrict the x-exponents to 
even integers.

Now experiment with ‘odd’ relations, like y4-3y3=4x5-6x3. Can you hypothesize about 
the effect of only even x-powers, only even y-powers, only odd x-powers and only 
odd y-powers? Can you prove your hypothesis?
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IV   Conics

These four plane curves are referred to as the conic sections: circle, parabola, ellipse 
and hyperbola. The name conic is due to the idea that each of these curves can be 
visualized as the intersection of a plane with a pair of congruent cones sharing a 
common axis and vertex.

A geometric definition: a conic is the locus of point P such that the ratio of the 
distance from P to a given point Q to the distance from P to a given line l is constant. 
In fig. 9, that ratio d/D (called the eccentricity) is .5

fig.9 conic with focus Q and directrix l.

The conic is an ellipse if 0<e<1; a parabola if e=1 and a hyperbola if e>1. We should 
note that this definition, based upon e, precludes a circle being a conic. We can 
nevertheless consider a circle to be the limiting case as D increases to infinity. I.e. as e 
approaches zero.

With GrafEq, use the following three constraint relation: and replace E with various 
positive constants in order to see the effect. Note that in this example, we are setting 
the focus at (1,0) and the directrix is the y-axis. We use ‘E’, rather than ‘e’, since ‘e’ 
is reserved for the exponential constant 2.7183….

and replace E with various positive constants in order to see the effect. Note that in 
this example, we are setting the focus at (1,0) and the directrix is the y-axis. 
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An algebraic definition: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 is the general quadratic  
equation in x and y, and its graph (if it exists) is a conic (parabola. ellipse, circle or 
hyperbola) or degenerate conic (two intersecting lines, a line or a point). Use GrafEq 
to convince yourself that:

 for A=1, C=2, and B=D=E=F=0 the graph is a point.
 for A=1, C=2, F=1, and B=D=E=0 the graph is empty.
 for A=1, B=-1, C=-2, D=-1, E=11, F=-12 the graph is a pair of intersecting 

lines
 for A=B=C=0 the graph is a line.

Can you visualize how a plane might intersect the cone-pair at a point, line or ‘X’?

Note that in the general quadratic, where A and C are not both zero, the effect of the 
xy term includes a rotation of the curve.

Use GrafEq to study the graph of : 4x2 + Bxy -y2 +2x -y -5 = 0 for various values of B,
such as 0, 5 and -5.

We can experiment with the preceding concepts as follows, using the basic equation:
x2 + y2 = z2 whose graph is the 3-dimensional bi-cone. If we enter the following two-
constraint relation, 

and examine the x-z view we see an ‘X’ corresponding to the y=0 plane, and two 
hyperbole corresponding to the y=1 and y=4 planes.

If we then edit the relation to be:

and examine the x-y view, we see two circles corresponding to the z=1 and z=4 
planes, and a single point corresponding to the z=0 plane.

If we now enter the following

and use the x-z view, we will see two ellipses and a hyperbola. The ellipses are 
determined by the planes: z = .1y + 3 and z = .2y + 3. The ‘steeper’ plane z = 2y + 3 
determines the hyperbola. The graph is illustrated in fig.10 below.
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fig.10 intersection of bi-cone by oblique planes

The preceding examples have not illustrated the parabola. If we enter the following 
two-constraint relation:  
x y z
z y

2 2 2

3
+ =

= +
and view it from the three viewports: x-y, x-z and y-z we will see two parabolas and 
one ray. Can you explain why one view is a ray? Is there a perspective in 3-D in 
which the parabola in space will appear as a line? A segment? Note that the plane: 
z=y+3 is ‘parallel’ to the edge of the bi-cone and therefore only intersects one of the 
cones. If we now ‘solve’ the 2-constraint relation, we derive: y=1/6 x2 -1.5 whose 
graph matches the original parabola as seen in the x-y view.
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V   Solving equations

The technique used by most graphing technology to solve equations in one variable , 
such as f(x)=0, is to construct a 2X2 system: y=f(x) and y=0 and proceed to determine 
the x-coordinates of the intersection. We note that GrafEq is capable of displaying a 
one-variable relation directly on the two-variable plane. Therefore, to solve x3-2x2 = 
x-2 we simply enter it and graph, to display three vertical lines corresponding to x= 1, 
2 and -1. Of more interest, perhaps, is the exercise of solving an equation in one 
variable over the complex numbers. For example if we wish to determine all cube 
roots of -1. (x3=-1) We can proceed as follows: let a solution be: a+bi and substitute 
this expression for x:
(a + bi)3 = -1 and expand to get
a3 + 3a2bi + 3ab2i2 + b3i3 = -1which reduces to:
a3 + 3a2bi - 3ab2 - b3i = -1 + 0i 
Equating the real and imaginary parts on both sides of the equation:
a3 - 3ab2  = -1 and 3a2bi - b3i =  0i 
So, our two-constraint relation: a3 - 3ab2  = -1; 3a2b - b3 = 0 may be graphed as in fig. 
12 below.

fig.12 Three complex solutions of x3=-1 as displayed on the a-b plane
The three solutions in fig.12 above (-1,0),(.79,.79) and (.79,-.79) correspond to -1+0i 
and .79±.79i.

GrafEq can also be used to solve systems of equations with more than two variables.
Consider the following system, whose solution consists of a 4-tuple:

w2-2x+y+3z = 18
x-y-2w+z = 6
-x+y+z = w+1
x+y = 3w-9

If the user simply enters the above as a 4-constraint relation, and firstly examines the 
x-y view, and subsequently the w-z view via the 1-point mode (s)he will determine 
the solution approximating  (3, -1, 1, 2)
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VI   Graphing Inequalities Without Inequality Signs

It is an interesting property of the absolute value function that permits the graphing of 
regions through equations. For instance, the graph of y=x2+|y-x2| consists of those 
points on and above the parabola y=x2. See fig. 13 below.

fig. 13 graph of   y=x2+|y-x2| 

Why does this happen? The definition of absolute value permits a number to equal its 
absolute value, only if it is greater or equal to zero. 

f ≥ 0   is equivalent to f = |f|

So, y ≥ x2 is equivalent to y – x2 ≥ 0 which is equivalent to y - x2 = | y - x2|
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VII   Locus

The path of a point that moves according to some rule is often referred to as a locus. 
For instance, the locus of a point on the x-y plane whose distance from (3,2) is exactly 
5 is a circle. We are often interested in the graph of the locus and its equation.

The multi-constraint capability of GrafEq greatly simplifies the plotting of loci.

Let us consider the following example:

Determine the graph and equation of the locus of a point on a ladder as the ladder slides smoothly 
down the wall from vertical to horizontal. The point is 1/4 the length of the ladder below the top 
of the ladder. The ladder is 8 m. in length.

Solution: Without loss of generality, we will consider the wall to be the y-axis and the 
floor to be the x-axis. So, the top of the ladder is originally at (0,8) and the bottom at 
(0,0). Let A(0,a) be the top of the ladder, B(b,0) be the bottom and P(x,y) be our locus 
point. Our defining relation, in three constraints:

( ) ( )0 0 82 2− + − =a b   by the distance formula, since AB = 8

y a
x

a
b

−
−

=
−
−0

0
0

 by the slope formula, since P is on line AB

( ) ( )x y a− + − =0 22 2  by the distance formula, since PA = 2.

The graph of the relation defined above:

fig. 14 graph of the locus of a point on a sliding ladder.
We note that our three constraints have not restricted the locus to quadrant I. More 
interestingly, we appear to have two curves - because we have not restricted point P to

17

-10 10

-10

10

x

y



be between A and B. We can restrict P to be between A and B by adding a fourth 
constraint: ( ) ( )x b y− + − =2 20 6
which restricts P to be six away from B5. Our graph now appears to be an ellipse, 
with intercepts at (0,6), (0,-6), (2,0) and (-2,0). See fig. 15 below.

fig. 15 locus of point P on ladder AB

Now, if we wish to determine an equation of the curve, we might use algebraic 
techniques to solve the system of constraints above. However, we can possibly 
anticipate the equation by presuming it is indeed an ellipse passing through those four 
points listed above. Then, using the standard equation of an ellipse with centre (0,0) 
and y-semi-major axis 6 and x-semi-minor axis 2 we derive:
( ) ( )x y−

+
−

=
0

2
0

6
1

2

2

2

2
  Standard equation of ellipse 

If we superimpose the graph of the above relation on top of our original relation, we 
note that they seem to coincide. Indeed, if we repeatedly zoom into any part of the 
curve, we cannot separate the relations. Although obviously not a formal proof - this 
exercise seems most compelling that our standard equation above is indeed the 
equation of our locus. We do note that we have allowed our ladder top to slide below 
the floor and our ladder bottom to slide horizontally in either direction. A formal 
algebraic derivation of our standard equation above, from the original constraints is 
left as an exercise for the reader. Once we conclude that equation above is correct, we 
can confidently say that the locus is indeed an ellipse. We have ‘discovered’ a 
geometric definition of the ellipse which is quite different from the standard 
definition involving two foci and a sum of focal radii6

5 The discriminating reader will notice that by adding the fourth constraint, we may now no longer 
need the second constraint - since constraints three and four together guarantee that point P will be on 
line AB. So - if we retain the last constraint and delete the second we should still achieve our desired 
graph. But if we do so, our graph has a calligraphic appearance. It is often desirable to over-constrain 
a relation when using GrafEq.
6 A subject for further study: what, if any, is the relationship between the foci and sum of focal radii in 
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VIII   Circular & Hyperbolic Functions Etc.

We can say that the sine function maps the arc length l to the y-coordinate of end-
point P, on the unit circle and the cosine function similarly maps l to P’s x-coordinate. 

An alternative definition of these circular functions is based on area. By this method, 
we may say that the sine function maps twice the area of the sector bounded by radius 
OP, the x-axis, and the subtended arc to the y-coordinate of P. The cosine function 
similarly maps 2A to P’s x-coordinate. (See fig. 17) It can be shown that these 
definitions are equivalent insofar as they generate the same values.

fig. 16 Circular functions derived from arc length

fig. 17 Circular functions derived from area

Students who notice the sinh (HYP-sin) and cosh (HYP-cos) buttons on their 
calculators and proceed to look up the standard definitions will see that they are based 
upon exponentials of the number e.

sinh x  = e ex x− −

2

the standard definition - and the length of segment and relative position of the locus point in the 
‘sliding ladder’ definition?
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cosh x  = e ex x+ −

2
Now - both of the above definitions of the circular functions are based on the unit 
circle (x2 + y2 = 1). We may now proceed to define the hyperbolic functions based on 
the hyperbola : x2 - y2 = 1. And we use the area-based method. In fig. 18 below, the 
cosh function maps 2A to P’s x-coordinate and sinh maps 2A to the y-coordinate.

fig.18 Hyperbolic Functions derived from area

The reader can verify the above technique by using the formula for the area A below:

A a a= + −1 2 12ln
and then using a calculator to derive cosh(2A) and sinh(2A)

   a   Area A cosh(2A) sinh(2A) a 2 1−     

  1      0        1          0           0       
  2    .658...   2        1.732...  1.732...
  3   ______ ______ ______ _______
  4   ______ ______ ______ _______

We note that a equals cosh2A and sinh2A is the root of a2 - 1.(the height of the 
hyperbola at x=a.)

We can now use this same area-based definition to create diamond and square 
functions.
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fig.19 Diamond functions defined by |x| + |y| = 1

The graphs of y = sind x and y = sinq x (Square function) are as shown below.

fig.20   y = sind x

fig.21   y = sinq x

fig.22   y = sinh x
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The square functions are based on the square with vertices at (1,1), (-1,1), (1,-1) and 
(-1,-1), using the same double area technique.

We note that sind and sinq are similar to the sin function in that they are periodic, 
with an amplitude of 1. The hyperbolic functions, however, are not periodic, but they 
do share the property that the derivative of sinh is cosh (as the derivative of sin is 
cos).
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IX   Envelopes

A mathematical envelope can be defined as a curve that is tangent to every member of 
a family of curves. For example, if we consider the set of coplanar segments of length 
l sharing a common end-point P and consider the perpendicular lines at the other ends 
of these segments, then the envelope of these perpendiculars consists of the circle 
with centre P and radius l.

An interesting envelope is that formed as follows: within a circle we select a point P 
(not the centre) and draw chords through P. At each chord’s end points we construct 
perpendiculars. The envelope of these perpendiculars is an ellipse. (fig.23)

P
.

fig. 23

The 4-constraint relation for fig. 23 defines the relation consisting of 12 pairs of 
perpendiculars. The circle in the relation has centre (0,0) and radius 5. P is (-4,0). The 
chord’s end point is (a,b).The slope of the chord is tan α

Now, it certainly seems plausible that the illustrative case described above consists of 
the ellipse with centre (0,0), focus P(-4,0), major axis of length 10 and minor axis of 
length 6. We can speculate that this is the case by noting that the horizontal chord 
through P will intersect the circle at (-5,0) and at (5,0), and at these points the 
perpendicular tangents are vertical lines. Similarly, the vertical chord through P will 
intersect the circle at (-4,3) and at (-4,-3). The perpendiculars formed at these points 
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will be horizontal lines passing through (0,3) and (0,-3). Now this is certainly no 
formal proof, but let us consider, say, the chord through P(-4,0) terminating at (0,5). 
Will the perpendicular formed be tangent to this ellipse? Let us consider the 
intersection of the perpendicular line L: (y-5) = -.8x with the ellipse: (x/5)2 + (y/3)2 = 
1 If the line is tangent to the ellipse we anticipate a single solution. The most 
convenient technique using GrafEq is to define a 2-constraint relation

and examine its graph. The graph of the above relation, after a number of ‘zoom-ins’ 
does appear to be a single point. The point’s coordinates are approximately (4,1.8) - 
the point directly above the other focus (4,0).7

Assuming our conclusions are true, there is one other item of note in this topic: we 
now have a method for geometrically constructing a tangent to a given ellipse at any 
point other than the ends of the major axis.

The method is as follows: given an ellipse with centre C, foci F and F’,and major axis 
AB we can construct a tangent through P by the following steps (note fig. 24)
1. Construct the circle with center C and radius AC
2. Construct segment PF, where P is on the ellipse.
3. Construct line QC, which  bisects FP with Q on the circle
4. Line QP is tangent to the ellipse.8

fig. 24
7 Solving (x/5)2 + (y/3)2 = 1 and y - 5 = -.8x simultaneously yields

x2 - 8x + 16 = 0 whose single solution is x = 4.
8 Note that this is not the simplest way to construct a tangent to an ellipse. The more direct method for 
constructing the tangent at P is to construct the perpendicular to the angle bisector of ∠ FPF’
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As a further example of an envelope, we consider the family of lines PM which 
perpendicularly bisect the segments connecting a given point F and a point Q on the 
line L. The envelope of this family is the parabola with focus F and directrix L.

.F

P

L

Q

M

S

fig. 259

Point P, the intersection of the perpendicular to L at Q with the perpendicular bisector 
of FQ, is a point of the parabola. An implication of this construction is that for a 
‘vertical’ parabola as above, the slope of the tangent at P is simply the directed 
distance from the axis of symmetry S to P divided by the directed distance from the 
directrix to the focus. Also, as was the case with the elliptical envelope, we can use 
the example above to derive a construction for creating a tangent line at any point on 
a parabola.

Our final example of an envelope hearkens back to our previous case of the ladder 
sliding down the wall (p17 - locus), however we are now interested in the envelope 
defined by the family of such ladders. (Segments of equal length, with end-points on 
the perpendicular axes.)

9 The defining 3-constraint relation defining the family is derived as follows: a is the set of x-
coordinates of points Q and P; f is the y-coordinate of the focus; f/2 is the y-coordinate of M and a/2 is 
its x-coordinate; a/f is the slope of line PM (since -f/a is FQ’s slope). The directrix is y=0.
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In this instance, since we desire only segments, it is most convenient to graph the 
family of segments by using four relations - one for each quadrant. In the relation 
expressed below for quadrant four, a is the y-coordinate of the segment’s end on the 
y-axis, and b is the x-coordinate of the segment’s end on the x-axis.

The quadrant 4 relation: a family of 11 segments defined by six constraints

-1 1

-1

1

x

y

Fig. 26

The envelope illustrated in fig. 26 is called an astroid.
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X   Coordinate Systems

The power of analytic geometry lies in the wedding of the geometric visual aspect of 
the graph of a relation with the precision available through algebraic abstraction. 
GrafEq supports two systems directly: the Cartesian rectangular and the polar.. 
However, we can use GrafEq to experiment with systems of our own design.

Let us consider a system of two axes (X and Y) which are not perpendicular. An X-
coordinate will be the horizontal distance from the Y-axis. The Y-coordinate will be 
the oblique distance (parallel to the Y-axis) from the X-axis.

Fig. 27 Non-standard Coordinate System

Let us now graph |X| + |Y| = 8 using the coordinate system above.

Fig. 28 |X|+|Y|=8
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We note that the standard diamond (|x|+|y|=8) is transformed into a ‘rectangle’ whose 
diagonals both remain 16, as in the graph of |x|+|y|=8 on the standard Cartesian 
system. Let us continue to experiment further by creating the graphs of Y=1/X and 
(X-5)2+(Y-5)2=25:

fig. 29 Y=1/X

fig.30 (X-5)2+(Y-5)2=25

It appears that fig. 29 illustrates a hyperbola and fig. 30 an ‘ellipse’.

How are these graphs created using GrafEq? The Y-axis has an arbitrary slope of 2 
(in terms of the standard x-y system). The X-axis is the traditional x-axis. And 
we maintain equal scales so that (0,1) and (1,0) in the X-Y system will both appear 
equidistant from (0,0).

Therefore we define X and Y as follows, using two constraints:

x X
Y

y
Y

= +

=

5
2

5
So, the X- and Y- axes may be plotted by adding a third constraint XY=0. The 
rectangle of fig. 28 is achieved by making |X|+|Y|=8 a constraint.
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Y

X

fig.31 (X±5)2+(Y±5)2=25
Fig.31 illustrates the effect of ‘reflecting’ over the axes.

Y

X

fig.32 X2+Y2 = 25(1+ 2 )2 - an external tangent

The preceding illustrations raise a number of interesting questions: 
- Is fig. 30 actually an ellipse? What are the major and minor axes lengths and how 
are they related to the ‘radius’ five?
- What is the equation of the line that bisects quadrants I and III?
- What might Y=X2 or Y=sinX look like?
- What X-Y equation would produce an apparent circle?
- Can we claim that all shapes are indeed what we expect - but are distorted and 
simply appear different?
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XI   An Optimization Exercise

GrafEq’s multi-constraint capability proves invaluable in a broad range of situations. 
One example is found in the problem of determining an optimal value, as in the 
following example:

“Given a circular piece of paper of radius 5, a sector of central angle θ is removed, and the 
remaining material is transformed to a cone. What value of θ will result in the cone of 
maximum volume?”

C

5

θ

fig. 33
We can calculate the remaining circumference as follows:

C = 10π(2π – θ )/2π  = 10π - 5 θ I
This arc of length C will be the circumference of the cone. 

5

C

h

R

fig. 34
Therefore the radius R of the cone’s base may be calculated:
R=C/2π II
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R may be used to calculate h: 
h R= −52 2 III

and the volume of the cone will be:
V=1/3 π R2h IV

We may now graph our relation by entering the following into a GrafEq relation 
window:

and plot using the view: θ vs V in Cartesian coordinates. We proceed to zoom out 
until we see the function’s maximum, then zoom in and use the 1-point view tool to 
approximate the maximum at (1.15,50.38). Our conclusion: the cone of maximum 
value will be achieved by selecting θ to be approximately 1.15 radians.

We now corroborate our result using differential calculus.  Rather than massage our 
equations I - IV into a single expression V=f(θ), which is somewhat unwieldy, we use 
the chain rule:

From IV: V=1/3 π R2h, it follows that

and from II: R = C/2π it follows that 

and from I:    C  = 10π - 5 θ   it follows that 
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Therefore,   

The maximum point will occur when   

Which occurs if

This10 reduces to R = 5 2 3 , which, using C=2πR and θ=(C-10π)/-5 from I, yields 
θ=2π(1-1/3 6 )  which is approximately 1.1529… which corresponds closely to our 
answer determined graphically. It is worth noting in passing, that although we 
calculated the derivative with respect to θ, our solution was achieved in terms of R.

10 Alternatively, one can create an additional 6th constraint:

y
R

R
R R=

−
− −

3

2
2

25
2 25

and plot y vs. θ . This has the advantage that we seek the intersection of y and θ which is much easier to 
precisely determine, compared to finding a maximum point.

And yet another alternative: as a 6th constraint, enter
R

R
R R

3

2
2

25
2 25

−
= −

then graph V vs. θ,  looking for a single point.
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XII   Transformations – An Exploration

In our curriculum we examine various transformations: translations, reflections and 
scalings. We here address particularly the relationship between the algebraic 
(symbolic) and the geometric (visual) representations of 2-D relations. The student 
will have learned that replacing x with a function of x results in a horizontal effect 
and replacing y with a function of y results in a vertical effect. The summative skill is 
exemplified when a student can describe the graph of, for example, y=3sin4(x+π) - 2 
in terms of the graph of y=sinx: “period quartered; amplitude tripled; translated down 
2 and π to the left.” The student realizes that every term in the algebraic 
representation has a corresponding attribute in the graphical representation.

The student may have been perplexed upon noting that such replacements seem to 
have the opposite effect from what might be expected: replacing x with x-3 results in 
a translation in the positive direction; replacing y with y/2 results in y-coordinates 
being multiplied by 2.

The question that naturally arises from the study of this topic: “Can we anticipate the 
effect on a given graph if we replace a variable in the original equation with an 
arbitrary function of that variable?” For example: What is the effect if we replace x 
with x2 or with x3  or with sinx?

Our method of addressing this question is essentially ‘scientific/experimental’ – we 
will experiment by making various replacements and note the effects. Although the 
graphing could be done manually we can greatly expedite matters by using GrafEq to 
produce all graphs.

Experiment 1:
Initial relation A: y= x3

Replace x with |x| A': y= | |x3

fig.35 y= x3 fig.36 y= | |x3

It appears that the quadrant 3 portion of A has reflected over the x-axis! But this 
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contradicts our assumption that x-replacements imply horizontal effects. Let’s try the 
same replacement on B: y=x3

fig.37 y=x3 fig.38 y=|x|3

This example seems to confirm the same aberration. Maybe our problem stems from 
the fact that both original graphs share the property that the quadrant 1 and quadrant 3 
portions are point symmetric. Let us examine an example like C: y= 2x-1.

fig.39 y= 2x-1 fig.40 y= 2|x| -1

It appears that the quadrant 3 portion of C has been ‘discarded’ and the quadrant 1 
portion has been both left alone and reflected over the y-axis. Let us next consider 
D: y=x3-3x+1.5 , which has the property that none of the quadrantal portions are 
similar.

fig.41 y=x3-3x+1.5 fig.42 y=|x|3-3|x|+1.5
Our observation can be expanded to the whole plane: the quadrants 1 and 4 portions 
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have remained and been reflected over the y-axis. The quadrant 2 and 3 portions are 
lost. Or, put another way, if (a,b) is a point on y=f(x) then if a is positive there will be 
two corresponding points on y=f(|x|)  :  (a,b) and (-a,b). But if a is negative, there are 
no corresponding points on f(|x|). Can we anticipate what might be the effect if we 
“absolute” both x and y variables? Using the basic relation in fig.41 above we can 
examine the result of the two replacements. The relation of fig.41 is particularly 
useful because each quadrantal portion is distinct from the others.

fig.43 y=x3-3x+1.5 fig.44 |y|=|x|3-3|x|+1.5

It appears that the graph of |y|=f(|x|) can be determined by simply examining the 
quadrant 1 portion of y=f(x): that portion is replicated by reflection over both axes. 
And the Q3 portion is simply a subsequent reflection. For (a,b) in Q1, there will be 3 
additional points generated: (-a,b), (-a,-b) and (a,-b). Points in the other quadrants will 
be discarded. When will (c,d) be a point of |y|=f(|x|)? If and only if (|c|,|d|) is a point of 
y=f(x).

Now, let us examine the effect of replacing x with x2

Experiment 2

Initial relation D:  y=x3-3x+1.5
Replace x with x2 D': y=(x2)3-3x2+1.5

fig.45 y=x3-3x+1.5 fig.46 y=(x2)3-3x2+1.5
We do note that the y-intercept appears unchanged, and the y-axis is an axis of 
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symmetry of D'which is an even function. Let’s examine further examples.

fig.47 y=-x+1 and y=-x2+1(dotted) fig.48 y=x-1 and y=x2-1(dotted)

We do note that y=f(x) and y=f(x2) do share the y-intercept and there is symmetry 
over the y-axis. But a complete understanding may be elusive, so we examine further:

fig.49 R: x=|y+1|-2  and R': x2=|y+1|-2 (dotted)

By examining the coordinates of specific points we can deduce: (a,b) is a point of 
R':R(x2,y) if (a2,b) is a point of R(x,y), where R is used to denote a relation. Or, put 
another way, if (a,b) is a point of R(x,y) then ( , )± a b is a point of R(x2,y). This 
clarifies why those points of R(x,y) in Quadrants 2 and 3 are discarded – their 
negative x-coordinates cannot be squares. The same conclusion may be expressed 
with respect to R(x,y) and R(|x|,y): for (a,b) on R(x,y) to generate a point (c,b) on 
R(|x|,y) then a must be the absolute value of c, implying that only Quadrant 1&4 
points of R(x,y) qualify.
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We are now at the stage of hypothesizing about such substitutions in general terms. 
Suppose we wish to graph R':R(f(x),y), given the graph of R(x,y). 

 (a,b) is a point of R': R(f(x),y),
iff (f(a),b) is a point of R: R(x,y).

Suppose we start with E: y=3x-1 and wish to graph E': y=3sinx-1.
(a,b) will be on E' iff (sina,b) is on E. Which implies that b, the y-coordinate, is 1 less 
than triple the sine of the first coordinate. I.e. b=3sina-1. Since –1 <sina <1 then b 
must lie between 3(-1)-1 and 3(1)-1, that is, between –4 and 2.

fig.50 E': y=3sinx-1 lies between the lines y=2 and y=-4

Now we can examine points of the segment of y=3x-1 between (1,2) and (-1,-4) to 
generate the corresponding points of y=3sinx-1.

E (0,-1) will generate (sin-1(0),-1) on E': (0,-1), (nπ,-1) where n is an integer
E (1,2) will generate (sin-1(1),2) on E': (π/2+2nπ,2) where n is an integer.

fig.51 Graph of y=3sinx-1 derived from the graph of y=3x-1
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We can further generalize:
(a,b) on R(x,y)

will yield (f -1(a),b) on R(f(x),y)

This concluding property will have a parallel equivalent version for y-replacements.

We can make further observations: 
• Although the computer generally allows a direct access to the desired graph 

without the need for any analysis, it may also be used as a tool to gain analytic 
insights.

• The ‘scientific/experimental’ approach may be somewhat messy – there may 
be dead ends or ambiguous conclusions. There may be digressions. Not 
exactly “efficient”

• There may be an inclination on the teacher’s part to spare the students by 
simply stating the concluding property and reinforce it by examining sample 
cases. This will regrettably reinforce the notion that mathematics is simply a 
collection of procedures to be practiced. 

Can we offer a decent example as to why the effect is the opposite of what might be 
expected?  Consider the statement “The number of children we have is equal to the 
number of my month of birth (Mar. =3)”. If we replace my month of birth with my 
wife’s month of birth (June : 3 more than mine), then our statement becomes The 
number of children we have is 3 less than the number of my wife’s month of birth.”

Or, in mathematics parlance: given a function f: y=f(x) such that (a,b) is a solution, 
we can say that f maps a to b, or f(a)=b. If we replace x with g(x), then f will map g(x) 
to b provided g(x) = a. If g maps c to a (i.e. c = g-1(a)) then we can conclude that (c,b) 
will be a solution of the composite function F: y=f(g(x)).

Conclusion: The foregoing presentation is intended to give some insight into an 
experimental approach to mathematical discovery. Including its false leads, incorrect 
conclusions and general inefficiency. With the obvious exception of the study of 
Euclidian geometry, most students are presented with mathematics as a finished 
product. They spend most of their time mastering taught techniques to solve a well-
defined set of problems. The skill required boils down to two steps: first identify the 
type of problem, then recall and apply the appropriate solution procedure. In contrast, 
an experimental approach requires that the student attempt to figure out what is 
happening, and thereby gain some understanding. 

Exercise: Given the graph of x2y2=64, using the methods above, sketch the graph of 
(1/x)2y2=64
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x2y2=64
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