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Abstract. A geometric algebra of point sets in the complex plane is proposed, based on two
fundamental operations: Minkowski sums and products. Although the (vector) Minkowski
sum is widely known, the Minkowski product of two-dimensional sets (induced by the
multiplication rule for complex numbers) has not previously attracted much attention. Many
interesting applications, interpretations, and connections arise from the geometric algebra based
on these operations. Minkowski products with lines and circles are intimately related to problems
of wavefront re£ection or refraction in geometrical optics. The Minkowski algebra is also the
natural extension, to complex numbers, of interval-arithmetic methods for monitoring propa-
gationoferrorsor uncertainties in real-numbercomputations.TheMinkowski sumsandproducts
offer basic s̀hape operators' for applications such as computer-aided design and mathematical
morphology, and may also prove useful in other contexts where complex variables play a funda-
mental role ^ Fourier analysis, conformal mapping, stability of control systems, etc.

Mathematics Subject Classi¢cations (2000). 51M15, 51N20, 53A04, 65D18, 65E05, 65G40.

Key words. complex sets, Minkowski sum, Minkowski product, geometric algebra, interval
arithmetic, geometrical optics, stability, conics, Cartesian ovals, Mo« bius transforms, boundary
evaluation.

1. Introduction

The term geometric algebra has been employed in diverse contexts [1, 30, 40], but is
currently most often associated with complex numbers, quaternions, and Clifford
and Grassmann algebras. Informally, we may consider any space whose elements
are subject to sum and product operations as constituting a geometric algebra,
if the operations admit simple geometrical interpretations. Thus the ¢rst geometric
algebra was probably the practice, in ancient Greece, of regarding products of
two and three numbers as areas and volumes.

In this paper we propose a new geometric algebra with sums and products that
admit an especially attractive and accessible geometrical interpretation. The space
that interests us here is the power set 2C of the complex numbers C ^ i.e., the
set of all subsets of C. The sum and product operations on this space are the
Minkowski sum � and Minkowski product 
, whose results are the subsets of C
populated by the point-wise complex sums and products of all pairs of members
drawn from their two complex-set operands.
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There are no essential restrictions on the nature of the complex sets that are
elements of this Minkowski geometric algebra : they may comprise discrete points,
loci or regions in the complex plane, fractal sets, or any combination of these forms.
To begin, however, we restrict our attention to simple regular sets (loci or regions) as
the Minkowski sum or product operands. In addition to explicitly-de¢ned sets, we
wish to accommodate certain implicitly-de¢ned sets (sets de¢ned in a procedural
manner, from which their geometrical nature is not immediately apparent) within
the scope of this geometric algebra; such sets arise naturally in a variety of contexts
and applications.

Our plan for this paper is as follows. In Section 2 we present the basic de¢nitions
and properties of Minkowski sums and products, and we motivate their study in
Section 3 by discussing various applications, interpretations, and connections to
other disciplines. The speci¢cation of `explicit' and `implicit' complex sets is then
addressed in Section 4. SinceMinkowski sums have already been extensively studied,
we discuss them only brie£y in Section 5 before proceeding toMinkowski products in
Section 6, wherein several closed-form results for products with `simple' operands
are presented. Minkowski division can be cast as multiplication by an `inverse' set,
and hence in Section 7 we discuss the inversion of sets and Mo« bius transformations.
A geometrical criterion that facilitates boundary evaluation for Minkowski products
of general (smooth) operands is then identi¢ed in Section 8. Finally, Section 9
suggests some promising avenues for further investigation.

2. Geometric Algebra of Complex Sets

Let A and B denote point sets in the complex plane. No essential assumptions con-
cerning the connectedness or dimensionality of these sets are required ^ they
may comprise discrete points, loci, regions, or any combination thereof. The two
fundamental operations that concern us are the Minkowski sum and Minkowski
product of such sets, de¢ned by*

A� B � f a� b j a 2 A and b 2 B g ;
A
 B � f a� b j a 2 A and b 2 B g ; �1�

where � and � are the usual complex-number sum and product ^ namely, if
a � a� ia and b � b� ib, we have

a� b � �a� b� � i �a� b� and a� b � �abÿ ab� � i �ab� ba� :
The Minkowski sum operation was introduced by Hermann Minkowski [42] in 1903
and has recently enjoyed resurgent interest, in the context of algorithms for geo-
metric design, computer graphics, image processing, and related ¢elds [22, 27, 32^34,
41, 54]. Of course, complex-number addition is equivalent to vector summation in

*Throughout this paper we denote real variables by italic characters, complex variables by
bold characters, and sets of complex numbers by uppercase calligraphic characters.
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R2, and the operation� is easily generalized to point sets inRn by interpreting `�' as
the appropriate vector sum.

On the other hand, the Minkowski product operation
 has not previously (to the
best of our knowledge) been systematically investigated. Although it is particular to
the complex plane ^ or, equivalently, to R2 ^ we argue that the geometric algebra
de¢ned by the two operations (1) offers a remarkably appealing, fertile, and useful
¢eld of study. It provides a unifying framework for the description of geometrical
operations (offsets, medial axis transforms, shape operators, etc.) that have formerly
been treated as disparate functions; it furnishes a theoretical foundation for
extending the well-known methods of (real) interval arithmetic to complex-number
computations that incorporate `uncertainty' information; and it yields remarkably
elegant characterizations of key constructs (caustics & anticaustics) in classical
geometrical optics. We feel sure that this brief catalog of insights, connections,
and applications for the Minkowski geometric algebra (1) will be greatly enriched
as its theoretical investigation unfolds and computational algorithms are elaborated.

From de¢nitions (1) it is clear that the Minkowski operations � and 
 are com-
mutative and associative, but in general we have

�A � B� 
 C 6� �A 
 C� � �B 
 C� ; �2�
i.e., the distributive law does not hold. This can be seen by noting that the de¢nitions
of the sets in (2) can be reduced to

�A � B� 
 C � f ax� bx j a 2 A; b 2 B; x 2 C g ;
�A 
 C� � �B 
 C� � f ax� by j a 2 A; b 2 B; x 2 C; y 2 C g :

The ¢rst set comprises the complex values that are obtained when we choose a single
member of C, multiply it by arbitrary members of A and B, and add the products. In
the second set, on the other hand, we independently choose two members of C,
multiply them by arbitrary members from A and B, and add the products. The ¢rst
set is thus, in general, a subset of the second set, and hence we have the sub-
distributive law:

�A � B� 
 C � �A 
 C� � �B 
 C� :
The Minkowski geometric algebra has a unique additive identity element (the set O
comprising the single value 0) and multiplicative identity element (the set I com-
prising the single value 1). From de¢nitions (1), however, one can easily see that
a set A does not have an additive or multiplicative inverse, except in the trivial case
that A comprises a single complex value.

Correspondingly, while the de¢nitions (1) can be readily modi¢ed to also de¢ne
Minkowski difference and division operations

A	 B � f aÿ b j a 2 A and b 2 B g ;
A� B � f a� b j a 2 A and b 2 B g ; �3�
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(where one must ensure that 0 62 B if the division is to yield a bounded set), we cannot
regard 	 and � as inverse operations to � and 
 since, in general,

�A � B� 	 B 6� A and �A 
 B� � B 6� A :

Actually, the operations (3) do not really offer any new functionality, since we can
write A	 B � A� �ÿB� and A� B � A
 Bÿ1 instead, where

ÿB � fÿb j b 2 B g and Bÿ1 � f bÿ1 j b 2 B g

de¢ne the negation ÿB and reciprocal Bÿ1 of any complex set B. Thus, we shall
henceforth employ only the operations � and 
.

As we shall see in Section 3, the geometric algebra of complex point sets, de¢ned by
the two Minkowski operations � and 
, is an attractive and fertile ¢eld of
investigation, with extensive connections to classical geometry, and diverse potential
applications. It is thus surprising that this subject is conspicuously absent from stan-
dard texts on complex analysis ^ even those that profess an overtly `geometrical'
perspective, such as Deaux [9], Schwerdtfeger [52], and Needham's beautifully-
illustrated Visual Complex Analysis [47].

3. Applications, Connections, Interpretations

To motivate our investigation of the geometric algebra of complex point sets, we
begin by brie£y indicating some potential applications, connections, and interpre-
tations. These encompass a generalization of real interval arithmetic to the complex
domain, re£ection and refraction of wavefronts in geometrical optics, stability
characterization of multi-parameter control systems, and the shape analysis and
procedural generation of two-dimensional domains. We expect that many other
applications will become apparent as algorithms for practical computations with
complex point sets are developed.

3.1. GENERALIZATION OF INTERVAL ARITHMETIC

Interval arithmetic is a formal algebra that provides the capability to monitor propa-
gation of errors or uncertainties in real-variable computations [44, 45]. Intervals can
be combined, according to prescribed arithmetic rules, to yield new intervals. These
rules also allow us to de¢ne interval-valued functions of interval variables. Hence,
standard algorithms, such as the Newton^Raphson root-¢nding method [25, 26],
admit fairly straightforward generalizations to the interval context. The intervals
in such computations may describe initial `measurement uncertainties' in the input
parameters to a problem, and also the effects of rounding errors (if interval
endpoints are computed in £oating-point arithmetic) by an extension known as
rounded interval arithmetic.
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By an interval � a; b � we mean a set of real values of the form

� a; b � � f t j aW tW b g : �4�

It is understood that a variable x represented by the interval � a; b � assumes any value
between a and b with equal probability. Thus, variables known with certainty have
de¢nite real values ^ which can be interpreted as `degenerate' intervals, of the form
a � � a; a �.

Given two intervals � a; b � and � c; d �, the result of an arithmetic operation
? 2 f� ; ÿ ; � ; �g on them is de¢ned to be the set of all real values obtained
by applying ? to operands drawn from each interval [44]:

� a; b � ? � c; d � � f x ? y j x 2 � a; b � and y 2 � c; d � g : �5�
Speci¢cally, one can easily verify that

a; b� � � c; d� � � a� c; b� d� � ;
a; b� � ÿ c; d� � � aÿ d; bÿ c� � ;
a; b� � � c; d� � � min�ac; ad; bc; bd�;max�ac; ad; bc; bd�� � ;
a; b� � � c; d� � � a; b� � � 1=d; 1=c� � ;

�6�

where division is usually de¢ned only for denominators such that 0 62 � c; d �. Thus,
for example,

� a; b � � � a; b � � � 2a; 2b � and � a; b � ÿ � a; b � � � aÿ b; bÿ a � :

Comparing the arithmetic of real numbers and of real intervals, certain common
and distinct features are noteworthy. One can verify from (6) that interval addition
and multiplication are both commutative and associative, but multiplication does
not (in general) distribute over addition. The interval system has a unique additive
identity � 0; 0 � � 0 and multiplicative identity � 1; 1 � � 1. However, an interval
� a; b � cannot possess an additive inverse or a multiplicative inverse unless it is
degenerate ^ i.e., a � b.

The methods of interval arithmetic have been employed in algorithms for com-
puter-aided design and computer graphics [46]. For example, the basic geometric
primitives used in these algorithms, such as Bëzier curves [12], can be generalized
to the case where the control points are not speci¢ed precisely by real coordinate
values, but rather by `multi-dimensional intervals' ^ in the simplest case this means
rectangular boxes [53], but the case of circular disks also admits a fairly straight-
forward treatment [35].

The geometric algebra de¢ned by (1) offers a natural generalization from the arith-
metic of real intervals to the arithmetic of compact simply-connected sets in the
complex plane of arbitrary shape. Of course, `simple' sets (disks or rectangles)
are subsumed as special cases within the general theory.

Complex-number computations are crucial in many scienti¢c/engineering
applications ^ Fourier analysis, quantum mechanics, control systems, etc. ^ and

MINKOWSKI GEOMETRIC ALGEBRA OF COMPLEX SETS 287



the ability to perform these computations upon sets of complex numbers, not just
discrete values, could have far-reaching implications. One may also formulate a
theory of complex set-valued functions of complex sets. Another possibility is to
de¢ne a real-valued, nonnegative density function f �a� over the points a 2 A of a
complex set. The composition of such functions, within the Minkowski geometric
algebra, provides a more sophisticated probabilistic model for error propagation
in complex-variable computations.

3.2. GEOMETRICAL OPTICS CONSTRUCTIONS

Minkowski products have some surprising and elegant connections to a basic con-
struct of classical geometrical optics ^ the anticaustic for the re£ection or refraction
of spherical waves by a smooth surface. This correspondence is addressed
thoroughly in Section 6 below ^ for the present, we shall con¢ne ourselves to a quali-
tative description of its signi¢cance; see also [7, 14, 15].

The propagation of wavefronts in a homogeneous medium is described by
Huygens' principle [56]. This states that, given an `initial' wavefront W0 at time
0, the propagated wavefront W at each subsequent time t is an offset or `parallel'
to W0, at distance d � ct from it (c is the wavespeed). Now in the presence of a
smooth refracting or re£ecting surface between different media, the wavefronts
before and after the re£ection or refraction are not members of a single family
of offset surfaces. Nevertheless, we may still invoke Huygens' principle to charac-
terize the re£ected/refracted wavefronts as follows:

Suppose a spherical wave emanates from a point source at time t � 0 and, after
re£ection or refraction at a smooth surface A between two homogeneous media,
subsequently assumes shape W at time t. By propagating W backward in time
in a single homogeneous medium, we obtain a (hypothetical) `initial' wavefront
W0 at t � 0. The signi¢cance of W0 is that its uniform propagation via Huygens'
principle (without re£ection/refraction by the surface A) yields the true
re£ected/refracted wavefront W at the prescribed time t.

The hypothetical `initial' wavefront W0, ¢rst studied by Jakob Bernoulli [2], is
called* the anticaustic for re£ection or refraction of a spherical wave by the surface
A. The name anticaustic arises from the fact that W0 is actually an involute of
the caustic ^ i.e., the envelope of the re£ected/refracted rays (which are normals
to the re£ected/refracted wavefronts). The `caustic' ^ from the Greek for `burning'
^ was thus named by Ehrenfried Walther von Tschirnhaus. Figure 1 illustrates
the concept of the anticaustic.

For axisymmetric con¢gurations of the light source and the surfaceA, it suf¢ces to
restrict the problem to a plane of symmetry. The anticaustic then has a simple
description in terms of our geometric algebra: it is the boundary @�A 
 C� of the
Minkowski product of a circle C and (a medial section of) A. Examples of these

*The anticaustic appears under a variety of alternate names in the geometrical optics
literature ± the secondarycaustic [6, 51], orthotomic [29], and archetypal wavefront [56].
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anticaustics are: an ellipse/hyperbola for refraction by a plane; a limac° on of Pascal
for re£ection by a sphere; and a Cartesian oval for refraction by a sphere. We elab-
orate on these results in Section 6 below.

3.3. STABILITY OF FEEDBACK CONTROL SYSTEMS

The root locus method [10, 31] is a standard means of analyzing the stability of linear
feedback control systems. In the Laplace transform variable s, let

cnsn � � � � � c1s � c0 � 0 �7�

be the characteristic equation of a control system. The roots of this equation are
poles of the system transfer function, and for stability they must all have negative
real parts. Now if the (real) coef¢cients c0; . . . ; cn depend on a single (real) parameter
k, the roots of (7) will trace out paths in the complex plane as k varies. These paths
comprise the root locus of the control system, and one is interested in determining
an admissible range of k values for which the loci of the roots of (7) lie entirely
to the left of the imaginary axis.

The sole parameter k is usually the `open loop gain' of the control system: the
coef¢cients c0; . . . ; cn depend linearly on it, and graphical rules [10, 31] can be used
to qualitatively assess the geometrical form of the root loci. In certain contexts,
however, it may be advantageous or necessary to analyze stability with respect

Figure 1. De¢nition of the anticaustic (an ellipse) for refraction of spherical waves by a planar interface
between media with refractive indices p and q.
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to several (real) control parameters k1; . . . ; kr. If we imagine the coef¢cients of (7) to
be dependent upon rX 2 parameters, its roots may cover a set of regions (not just
loci ) in the complex plane as each parameter ki varies independently over some
allowed interval � ai; bi �.

Thus, for a given set of (independent) parameter variations ki 2 � ai; bi � for
1W iW r, and coef¢cients cj�k1; . . . ; kr� for j � 0; . . . ; n of the characteristic equation
(7) dependent on them, we are led to consider point sets of the form

R � s 2 C
Xn
j�0

cj�k1; . . . ; kr�s j � 0 for ki 2 � ai; bi � ; 1W iW r

������
8<:

9=; �8�

in the complex plane. We call such a point set the root domain for the given charac-
teristic equation coef¢cients and parameter variations, and the system is stable
for any combination of parameters k1; . . . ; kr in the speci¢ed ranges if the root
domain R lies entirely to the left of the imaginary axis.

As a simple example, consider the 2-parameter quadratic equation

s2 � 2k1s � k2 � 0 with k1; k2 2 � 0; 1 � : �9�
For pairs k1; k2 2 � 0; 1 � with k21 X k2, both roots are real and they cover the interval
� ÿ2; 0 � as k1, k2 vary. When k21 < k2, on the other hand, the roots are complex con-
jugates and they cover the half-disk de¢ned by jsjW 1 and Re�s�W 0. Thus, for this
system, the root domain R is of mixed dimension: the union of a one-dimensional
locus (a real interval) and a two-dimensional area, as shown in Figure 2. The system
is stable except for cases with k1 � 0, in which both roots of equation (9) have
Re�s� � 0.

The root domain (8) for a multi-parameter characteristic equation is an example of
an implicitly-de¢ned complex set ^ i.e., a set that is de¢ned in a `procedural' manner,
from which its geometrical and topological properties are not immediately apparent:
the boundary of such a set must be computed. An explicitly-de¢ned complex set, on
the other hand, is one whose geometry, topology, and boundary are directly evident
from its de¢nition.

Now sets such as the root domain (8) cannot, in general, be formulated as
Minkowski combinations of `simple' explicitly-de¢ned sets. Nevertheless, we wish
to include their analysis/evaluation within the scope of our geometric algebra,
because of their fundamental importance in applications. When the explicit evalu-
ation of an implicitly-de¢ned complex set is dif¢cult, it might be advantageous
to invoke methods to approximate or contain that set by simpler sets, or Minkowski
combinations of simpler sets.

One may generalize the de¢nition (8) to allow coef¢cients c0; . . . ; cn (and par-
ameters k1; . . . ; kr) with complex values. For most applications, however, the
coef¢cients (and the parameters they depend on) are real-valued. Since the roots
of a polynomial with real coef¢cients are real or complex conjugate pairs, certain
features of the simple root domain R for (9) shown in Figure 2 are generic to this
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context ^ namely, it is the union of a set of real intervals and a set of complex regions
that are symmetric about the real axis.

3.4. OFFSETS AND MEDIAL AXES OF PLANAR DOMAINS

The Minkowski geometric algebra offers a versatile medium for various shape con-
struction and analysis functions that prove useful in applications such as geometric
design, image processing, pattern recognition, and font generation. Many of these
applications are still under active development ^ we con¢ne ourselves here to
mentioning a few representative examples.

A basic requirement of any computer-aided design system is the ability to compute
the offset Ad at distance d to a planar domain A [50]. The offset domain Ad has a
simple description in terms of Minkowski sums:

Ad � A� Sd ;
Sd being the disk of radius d centered on the origin. This de¢nes an `exterior' offset;
we can also de¢ne an `interior' offset by the expression

Aÿd � �Ac � Sd�c ;
where the superscript c denotes the complement of a set. These exterior and interior
offset domains correspond to the results of the dilation and erosion operators, used
in the ¢eld of mathematical morphology [54, 55].

In many applications, we are interested in the boundary of Ad ^ i.e., the offset
curve to the boundary of A. In computing offset curves, a fundamental dif¢culty
arises from the fact that a rational curve does not, in general, have rational offsets.
For example, the offset to a rational curve of degree n is [18] a (nonrational) algebraic
curve* of degree 6nÿ 4 in general. Much effort has thus been devoted to the problem

Figure 2. The root domain for the 2-parameter quadratic equation (9).

*This curve describes the `two±sided' offset, i.e., the offsets at distance �d and ÿd.
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of approximating offset curves; see [11] and references therein. The Pythagorean-
hodograph curves are an exception ^ by construction, their unit normals depend
rationally on the curve parameter, and hence their offsets are generically rational
curves [13, 20, 48].

The medial axis ^ or `skeleton' ^ of a planar domain D is the locus of centers of
maximal disks (touching the boundary of D in at least two points) that may be
inscribed within D. By superposing a radius function, specifying the radius of
the maximal inscribed disk at each point of the medial axis, we obtain the `medial
axis transform' (MAT) of the domain D. The boundary of D can be precisely
recovered from its MAT, as the envelope of the one-parameter family of these
maximal inscribed disks.

Medial axis transforms have diverse applications in, for example, shape recog-
nition and pattern analysis, image compression, path planning, surface ¢tting, font
design, and mesh generation. The medial axis transform ^ and the closely-related
Voronoi diagram [49] ^ are also very useful [8, 28] in the `trimming' of a sequence
of (untrimmed) offsets at successive distances d, which can otherwise be highly
computation-intensive.

The process of boundary recovery from a MAT can be regarded as a form of
`scaled Minkowski sum' ^ if A and B are given complex sets, and f is a real-valued
function de¢ned on set A, we say* that

A�f B � f a� f �a�b j a 2 A; b 2 B g
is the Minkowski sum of A and B scaled by f . Thus, ifM is the medial axis, r is the
radius function onM, and S is the unit disk, the domain D can be represented [33]
as the Minkowski sum of M and S scaled by r:

D � M�r S � f a� r�a�b j a 2 M; b 2 S g :
The boundary of D is, in general, a nonrational locus even if the segments of the
medial axis M and the radius function r are rational. Exceptionally, if the MAT
is speci¢ed byMinkowski Pythagorean-hodograph curves [43], the domain boundary
is guaranteed to comprise rational segments.

4. Speci¢cation of Complex Sets

The remainder of this paper is devoted to an exploration of the properties and con-
struction of Minkowski combinations. Since the Minkowski sum operation has been
thoroughly investigated, we give only a brief summary of its salient features in Sec-
tion 5. Our primary focus is on Minkowski products: in Section 6 we develop
closed-form results for cases with `basic' operands (points, lines, and circles), while
in Section 8 we identify a key geometrical condition that facilitates boundary evalu-
ation for products with more general set operands.

*In this notation, the subscript on � denotes the scaling function (whose domain is the first
operand) that should be applied to each point of the second operand.
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There are many possible ways to specify point sets in the complex plane. Before
embarking on a discussion of Minkowski set operations, we must ¢rst establish
an appropriate means for specifying set operands, that is suf¢ciently versatile to
meet the needs of various applications. In Section 3.3, for example, we distinguished
between `explicitly' and `implicitly' de¢ned sets, and cited the root domain (8) as an
example of the latter that arises in stability analysis of control systems. Expression
(8) is actually a rather complicated example ^ as a simpler implicit set, consider

C � f a2 � ab j a 2 A; b 2 B g :
At ¢rst, we may be tempted to identify C with �A 
 A� � �A 
 B�. But this is actually
incorrect, for the same reason as the failure (2) of the distributivity law. Whereas
points in �A 
 A� � �A 
 B� arise from three simultaneous and independent choices
of members from A, points in C involve choosing only one member at a time from
A. Hence, C � �A 
A� � �A 
 B�.

In general, for a (complex) polynomial f�a; b; . . .� in complex variables from pre-
scribed sets A;B; . . ., if any variable appears more than once * in f, the set
f f�a; b; . . .� j a 2 A; b 2 B; . . . g is not equivalent to the Minkowski combination
obtained from f by replacing a; b; . . . by A;B; . . . and sums and products by the
operators � and 
. Minkowski combinations imply complete independence in
the choice of complex values from their respective sets, but multiple appearances
of a variable in an expression always refer to the same value, not different values
freely selected from some parent set.

Because of their importance in applications, we regard the consideration of
implicitly-de¢ned sets such as these to be a key element of the Minkowski geometric
algebra. In fact, our interest in this subject arose in attempting to characterize a
complex set of this nature that one encounters in the problem of Hermite
interpolation by Pythagorean-hodograph quintics [19].

As noted above, given an implicit set de¢ned by a polynomial in several variables,
with multiple occurrences of at least one, we can de¢ne a Minkowski combination
that is a superset of the implicit set. An explicit evaluation of the implicit set ^ i.e.,
a complete description of its boundary ^ is, however, a far more challenging task
in general. Thus, we defer a thorough treatment of this problem to a subsequent
paper that will fully address the computational aspects of the Minkowski geometric
algebra.

5. Minkowski Sums

The Minkowski sum of two points sets, ¢rst introduced by H. Minkowski [42] in
1903, is a classical concept that has been extensively studied in the ¢eld of integral
geometry [24, 39]. More recently, there has been considerable interest in developing
algorithms to evaluate Minkowski sums for applications in areas such as computer

*Of course, squares and higher powers of a variable count as multiple appearances.
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graphics, computer aided design, computer vision, image processing, and robotics:
see, for example, [22, 32^34, 38, 41, 54, 55].

Our familiarity with the ordinary vector algebra of Rn imparts an intuitive
appreciation for the meaning of A� B, namely, the union of translates of B by
vectors from the origin to the points of A (or vice-versa). In particular, there is little
dif¢culty in visualizing such sums in Euclidean spaces of any dimension n, and
one easily sees that the geometrical nature of the set A� B is independent of
the location of the sets A and B relative to the origin.

Since they are well established, we do not propose to give a detailed review of the
theoretical properties and computational methods for Minkowski sums here (the
reader may consult the references cited above). Rather, we simply wish to emphasize
that the above `intuitive' properties of Minkowski sums (translation invariance and
extensibility to any number of dimensions) must be relinquished upon introducing
the notion of a Minkowski product.

6. Minkowski Products

We now derive exact results for basic Minkowski products involving `simple'
operands ^ i.e., points, lines, and circles. In this context, the conics and a quartic
curve called the Cartesian oval (and various special instances thereof) play a fun-
damental role. Furthermore, we shall see that such products are intimately con-
nected to certain classical problems of geometrical optics. The cases treated
below exhaust the range of Minkowski products with tractable closed-form
solutions. In Section 8, we develop some basic principles that facilitate the
(approximate) computation of more general products. Envelopes of families of plane
curves play a key role in the analysis of Minkowski products with simple operands. If
C�l� is a one-parameter family of curves, continuously dependent on a (real) par-
ameter l, there are several approaches to de¢ning its envelope. Three common de¢-
nitions are:

. the envelope E is a plane curve that is tangent, at each of its points, to some
curve in the family C�l�;

. the envelope E is the locus, as l varies, of the intersection points of `neighboring'
curves C�l� and C�l� Dl�, in the limit Dl! 0;

. if S is the surface obtained by `stacking' each curve C�l� at height z � l above
the �x; y� plane, the envelope E is the projection of the silhouette of S (as viewed
along the z-axis) onto the �x; y� plane.

These de¢nitions are not always precisely equivalent, and may be subject to certain
technical quali¢cations under exceptional circumstances. We do not wish to be
diverted into the technical details of envelope speci¢cations here; the reader may
consult [3^5, 16, 21] for a more detailed treatment. These problems require us
to introduce quali¢cations into the statements of some of the results derived below
^ e.g., Propositions 3 and 6.
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6.1. MULTIPLICATION BY POINTS

Suppose one of the operands in the Minkowski product A
 B is a singleton ^ i.e., a
one-point set. Since the Minkowski product operation is commutative, we may
assume without loss of generality that A is the set comprising just one (nonzero)
complex point, z � jzj eiy. The Minkowski product is then a trivial operation:
namely, rotation of the complex set B about the origin by the angle y, and scaling
of it by the magni¢cation factor jzj. Although this is a very elementary operation
in the complex plane, it provides the foundation for subsequent more-complicated
Minkowski products.

Note that the operation of multiplication by a singleton admits a unique inverse.
As in the case of the interval arithmetic (Section 3.1), if one operand in the
Minkowski product degenerates to a one-point set fzg, the set fzÿ1g is its multi-
plicative inverse in our geometric algebra (except when z � 0).

We now describe (without proof) some basic properties of multiplication by a
point ^ one may easily verify them. These properties will help facilitate subsequent
derivations of more complicated products.

PROPOSITION 1. If w; z are ¢xed nonzero complex numbers andA;B are point sets
in the complex plane, the following properties hold

A � fzÿ1g 
 fzg 
 A ; �10�

A 
 B � fzÿ1wÿ1g 
 �fzg 
 A� 
 �fwg 
 B� : �11�

Now the relation (11) allows us to perform certain `normalizations' before
computing a Minkowski product A
 B. Given sets A and B, we ¢rst move* both
of them into `standard' locations, by multiplying them individually by
suitably-chosen complex numbers, z and w. We then compute the Minkowski prod-
uct of these `normalized' sets. Finally, multiplying the resulting set by the inverses
zÿ1 and wÿ1 yields the desired Minkowski product A
 B.

Multiplication by singleton sets offers a fruitful perspective on Minkowski prod-
ucts of general point sets. Namely, such products can be interpreted as the union
of all sets that are obtained by multiplying the entirety of one set by each constituent
point of the other set:

A
 B �
[
z2A
fzg 
 B �

[
z2B
A 
 fzg :

In particular, when A is a parameterized curve in the complex plane we can consider
A
 B to be the union of the one-parameter family of sets that are obtained by
applying certain scalings and rotations to B.
*Note that the word movehere,meaningmultiplicationbyanonzero complex number, connotes
a combination of scaling and rotation about the origin.
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6.2. PRODUCT OF TWO LINES

As the ¢rst nontrivial example of a Minkowski product, we now show that
multiplying two lines gives, in general, the region outside a parabola.

Let A and B be lines in the complex plane. To begin, we assume neither of them
passes through the origin. Then, using (11), we can transform both of them into
vertical lines passing through the point 1 on the real axis without loss of generality.
Thus, it is suf¢cient to deal with the sets

A � f 1� i t j t 2 R g ; B � f 1� is j s 2 R g :

We may consider the Minkowski product A
 B as the union of a one-parameter
family of lines. Since multiplication by 1� i t transforms B into a line that passes
through the point 1� i t, and is perpendicular to the line connecting 0 and
1� i t, the equation of this one-parameter family of lines is

f�x; y; t� � x� tyÿ t2 ÿ 1 � 0 :

Invoking the usual procedure [3, 4] for envelope computations, we ¢nd upon elim-
inating t among the equations f�x; y; t� � 0 and @f�x; y; t�=@t � 0 that this family
of lines has the parabola y2 � 4�1ÿ x� as envelope. The vertex of this parabola
is at the point 1 on the real axis, and the focus is at the origin. Figure 3 illustrates
the family of lines, and its envelope.

Thus, the Minkowski product of two lines A and B in `standard location' is the
region f x� iy j y2 X 4�1ÿ x� g. Each point z � x� iy in the interior of this region,
i.e., y2 > 4�1ÿ x�, is the product of two distinct pairs of points from A and B.
On the other hand, every point z on the boundary of the region is generated by
a unique pair of points from A and B. The Minkowski product of any pair of lines
(not passing through the origin) can obtained by means of a suitable rotation
and scaling of this region.

Figure 3. The Minkowski product of two lines.
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Consider now the case where one of the two lines (A, say) passes through the
origin. Then we can normalize the two sets as follows:

A � f t j t 2 R g ; B � f 1� i s j s 2 R g :

Each nonzero t on A transforms B into a vertical line passing through the value t on
the real axis. The union of all such lines ¢lls the entire complex plane, except
the imaginary axis. And the point 0 on A shrinks B to a single point, at the origin.
Hence, A
 B is the set f z j Re �z� 6� 0 g [ f 0 g. In the case that both the lines A
and B pass through the origin, we transform both into the real axis, and their
Minkowski product is just the real line.

We now summarize these results for the Minkowski product of two lines, accord-
ing to whether or not they pass through the origin:

PROPOSITION 2. Let A and B be lines in the complex plane. Then:

(a) when neitherA nor B passes through the origin, theMinkowski productA
 B is the
region outside of a parabola;

(b) when just one of A and B passes through the origin, A
 B is the union of the origin
and two half planes separated by a line through the origin;

(c) when bothA and B pass through the origin,A
 B is also a line passing through the
origin.

6.3. MULTIPLICATION BY LINES ^ NEGATIVE PEDALS

We have shown that, in general, theMinkowski product of linesA and B is the region
bounded by a parabola. Suppose we now replace one of the lines (A, say) by a smooth
curve C in the complex plane. We will now show that the Minkowski product of C
and a line that does not pass through the origin is closely related to the negative
pedal of C with respect to the origin.

For a given plane curve C and ¢xed point o, the pedal curve C0 of C with respect to
o is de¢ned [36, 37] to be the locus of the foot of the perpendicular drawn from o to
the tangent line of curve C at a point p that moves along it. Conversely, a curve
C that has a given curve C 0 as its pedal with respect to o is called the negative pedal
ofC 0 with respect to o (the negative pedal is consequently the envelope of lines drawn
through each point q of C 0, that are perpendicular to oq). Figure 4 illustrates these
geometrical constructions.

Now if the line B does not pass through the origin, we may transform it into the
vertical line passing through the point 1 on the real axis, as before. However,
we do not impose any particular normalization on the operand A corresponding
to the curve C in the complex plane.
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PROPOSITION 3. Let A be a smooth curve C in the complex plane, and let B be the
vertical line through 1. Then @�A 
 B� is ordinarily (a subset of) the negative pedal
of C with respect to the origin.

Proof. We regard A
 B as the union of a one-parameter family of lines ^ each
point z of A transforms B into a line passing through z, perpendicular to the line
connecting z with the origin. The envelope of this one-parameter family of lines
is the negative pedal of the curve C with respect to the origin. In `simple' instances,
the boundary @�A 
 B� will be identical to the envelope of this family of lines.
For a general curve A, however, we must allow for the possibility that: (i) portions
of the envelope lie in the interior of the region A
 B; and (ii) in exceptional
circumstances, portions of individual lines in the family (which are not considered
part of the envelope) may contribute to the boundary of A
 B. Thus, for a general
curve A and a line B, we qualify our identi¢cation of @�A 
 B� with the negative
pedal by saying `ordinarily' and `a subset of' in Proposition 3. &

Pedals and negative pedals have a special signi¢cance in geometric optics [29].
Suppose that the pedal point o and curve C represent a light source and a mirror.
Since each point q on the pedal of C with respect to o is the foot of the perpendicular
from o to a tangent line of C, we can obtain the anticaustic for re£ection of spherical
waves from o by C through a radial scaling of the pedal curve about o by a factor 2.
Conversely, we can design the mirror that yields a given anticaustic C for re£ection
of spherical waves from o, through a radial scaling about o by a factor 1

2 of the nega-
tive pedal of C with respect to o. Figure 5 illustrates the geometry of these problems,
which admits another interpretation: each point of C is equidistant from the source
point o and corresponding anticaustic point r ^ hence the mirror C is the
(untrimmed) point/curve bisector [16] of the source and the anticaustic.

Figure 4. Points q1, q2, q3 on curve C0 are footpoints of the perpendiculars (dashed lines) drawn from o to
tangents of the curve C at points p1, p2, p3 on it.Thus, C0 is the pedal of C with respect to o. Conversely, lines
through q1, q2, q3 onC 0 that are perpendicular to the radii drawn from o are tangent toC at p1, p2, p3, andC is
thus the negative pedal of C0 with respect to o.
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6.4. PRODUCT OFA LINE AND A CIRCLE

Suppose that A is a circle and B is a line. We ¢rst deal with some exceptional yet
simple cases. If the line B passes through the origin, we may transform it into
the real axis by a rotation. Then each z on the circle A transforms B into the line
passing through z and the origin. Thus, if the origin is inside the circle, this family
of lines will sweep out the entire complex plane. When the origin lies on the circle,
the Minkowski product covers the entire plane except the circle tangent line at
the origin (but the origin itself is included). Finally, when the origin is outside
the circle, the family of lines ¢lls the wedge-shaped region between the two tangent
lines to the circle drawn from the origin.

Assuming henceforth that the line B does not go through the origin, we transform
it into the vertical line passing through 1 on the real axis. Another exceptional case
occurs when the center of A is the origin: one can easily see that the Minkowski
product A
 B is the region outside the circle A.

In the general case, we may assume that the center ofA is 1 and B is the vertical line
passing through 1. The Minkowski product A
 B then has two interpretations. As
in the preceding section, we may consider @�A 
 B� to be the negative pedal of
the circle A with respect to the origin. The negative pedal of a circle is an ellipse
or a hyperbola, according to whether or not the circle contains the pedal point. Thus,
the Minkowski product of the circle A and the line B is bounded by an ellipse or a
hyperbola, according to whether the origin is inside or outside A. Figure 6 illustrates
the family of lines when the radius of the circle is 3=2 (on the left), and 3=4 (on the
right).

The other interpretation of the Minkowski product of the circle A and the line B is
the one-parameter family of circles generated by multiplyingA by each point z on the

Figure 5. Anticaustic for re£ection of spherical waves as a pedal curve: with light source o and mirror C, a
ray from o is re£ected at point p of C to point s. The dashed line is the tangent of C at p, and hence the
footpoint q of the perpendicular from o to this line lies on the pedal C0 of C with respect to o. Scaling C0

radially about oby 2 yieldsC00, the triangles o, p, q and r, p, q being similar, where r onC00 corresponds to q on
C0. Since jpÿ rj � jpÿ oj, C00 represents the anticaustic for re£ection of spherical waves from o by C.
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line B. We now show that this interpretation yields exactly the same result for
@�A 
 B�: an ellipse or a hyperbola.

PROPOSITION 4. Let A be the circle with radius r and center 1, and let B be the
vertical line through 1. The Minkowski product A
 B is then as follows:

(a) if r > 1, A
 B is the region outside an ellipse;
(b) if r < 1, A
 B is the region between the branches of a hyperbola;
(c) if r � 1, A
 B is the region de¢ned by f z j Im �z� 6� 0 g [ f 0; 2 g.

Proof. Writing the operands A and B in the form

A � f x� iy j �xÿ 1�2 � y2 � r2 g ; B � f 1� i t j t 2 R g ;
the Minkowski product A
 B can be written as the union

A
 B �
[
t2R
f1� i tg 
 A :

Each point 1� i t of B transforms A into a circle with center 1� i t and radius
rj1� i tj. So the one parameter family of circles is written in the form of

jx� iyÿ �1� i t�j � r j1� i tj
or

f�x; y; t� � �xÿ 1�2 � �yÿ t�2 ÿ r2�1� t2� � 0 : �12�
And the partial derivative of f with respect to t is

@f
@t
�x; y; t� � ÿ 2�yÿ t� ÿ 2r2t :

By eliminating t among the equations f � 0 and @f=@t � 0, we obtain the envelope of

Figure 6. The Minkowski products of a line and a circle.
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this family of circles:

�xÿ 1�2 � r2

r2 ÿ 1
y2 � r2 : �13�

Thus, @�A 
 B� is an ellipse or a hyperbola according to whether r is greater than or
less than 1. When r � 1, on the other hand, the family (12) consists of all circles
passing through the point 2 and the origin. The union of these circles comprises
all points with Im �z� 6� 0, plus the real points 0 and 2. &

Figure 7 shows the same Minkowski line/circle products as in Figure 6, but inter-
preted in terms of one-parameter families of circles.

6.5. PRODUCT OF TWO CIRCLES

We now consider the Minkowski product of two circles, A and B. In general, this is
the region bounded by a curve known as the Cartesian oval.

We ¢rst deal with certain exceptional cases. If the centers of both circles are at the
origin, the Minkowski product is also a circle centered at the origin whose radius is
the product of the radii of A and B. If only one of the circles (A, say) has center
at the origin, we can transform A into the unit circle in the complex plane, and
B into a circle with center 1 and radius r. One can then easily see that the Minkowski
product A
 B is the annular region de¢ned by j1ÿ rjW jzjW 1� r. For circles in
general position, we have:

PROPOSITION 5. Let A and B be two circles with centers not at the origin. Then
@�A 
 B� is a Cartesian oval, and the Minkowski productA
 B is the region between
the two loops of the Cartesian oval.

Since the Cartesian oval is not a particularly well-known curve, we brie£y review
its de¢nition and basic properties before proceeding with the proof of
Proposition 5. Conceptually, the simplest description of a Cartesian oval is in terms
of bipolar coordinates ^ i.e., the distances r1 and r2 of a point on the curve from
two ¢xed `poles' in the plane. Without loss of generality, we may take poles at
�0; 0� and �a; 0�. Then, for nonzero real valuesm and n, the Cartesian oval is described
by the bipolar equation*

mr1 � n r2 � �1 ; �14�

which subsumes the ellipse/hyperbola (m � �n) and circle (a � 0) as special cases.
To describe the general Cartesian oval as an algebraic curve, we need to take squares

*In fact, a Cartesian oval admits three distinct bipolar descriptions [23]. We may choose any
two of three possible poles, and for each pair there are corresponding m and n values.
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twice in (14) to clear radicals ^ this gives

�m2r21 ÿ n2r22�2 ÿ 2 �m2r21 � n2r22� � 1 � 0 ; �15�
where r21 � x2 � y2 and r22 � �xÿ a�2 � y2. Thus, the general Cartesian oval is an
algebraic curve of degree 4. It consists of two loops that comprise a single irreducible
curve.* It has double points at the circular points at in¢nity, but (except in degener-
ate cases) no other singularities, and is thus of genus 1.

The Cartesian oval is of fundamental importance in geometrical optics: it is the
anticaustic for refraction of a spherical wavefront (from a point source) by a
spherical surface. By symmetry, we need only consider a planar section containing
the point source and the center of the refracting sphere. Suppose this circle has center
1 and radius r, and let p and q be the refractive indices associated with the interior and
exterior of the circle. If the source is at the origin, the optical path length between the
origin and a point x� iy outside the circle, via the point 1� reiy on it, is de¢ned by

` � p j 1� reiy j � q j x� iyÿ �1� reiy� j :
On setting ` � 0 and squaring, we obtain the one-parameter family of circles

k2 � �xÿ 1ÿ r cos y�2 � �yÿ r sin y�2 � ÿ �r2 � 2r cos y� 1� � 0 ; �16�
where k � q=p. The anticaustic is, by de¢nition, the envelope of this family of circles.
We can express (16) rationally in terms of a parameter t by setting cos y �
�1ÿ t2�=�1� t2� and sin y � 2t=�1� t2�. Eliminating t between the resulting

Figure 7. The families of circles de¢ning the Minkowski products in Figure 6.

*Only two of the four possible sign combinations in equation (14) define real loci.

302 RIDA T. FAROUKI ET AL.



expression and its partial derivative with respect to t then gives the Cartesian oval
equation*

� k2��xÿ 1�2 � y2 � r2� ÿ �r2 � 1� �2 ÿ 4r2� �k2�xÿ 1� � 1�2 � k4y2 � � 0 : �17�
This equation is of the form (15), with m � k=�1ÿ k2�r and n � k2=�1ÿ k2�r, the
distances r1 and r2 being measured from poles at �0; 0� and �1ÿ kÿ2; 0�.

We now show that the boundary of the Minkowski product of two circles is a
Cartesian oval: the Minkowski product occupies the region between the two loops
of the Cartesian oval.

Proof of Proposition 5. Since neither of the circles has center at the origin, we can
transform both into circles with center 1. The operands A and B of the Minkowski
product are then of the form

A � f 1� r eiy j 0W y < 2p g ; B � 1� 1
k

eic j 0Wc < 2p
� �

:

Now theMinkowski productA
 B can be regarded as the union of a one-parameter
family of circles, of the form

A
 B �
[
y

f 1� r eiy g 
 B : �18�

Since multiplication by 1� r eiy transforms B into a circle with center 1� r eiy and
radius kÿ1j 1� r eiy j, the one-parameter family of circles in equation (18) is identical
to that de¢ned by equation (16). Therefore, the boundary of the Minkowski product
is a Cartesian oval. Each circle in the family (18) touches both the inner and the outer
loop of the Cartesian oval, and hence the Minkowski product A
 B occupies the
region between the two loops. &

TheMinkowski productA
 B can also be interpreted as the union of the family of
circles obtained by multiplying A by each point of B:

A
 B �
[
c

A
 1� 1
k

eic
� �

: �19�

Figure 8 illustrates the two one-parameter families of circles de¢ned by (18) and (19).
Although the two families of circles are different, they clearly have the same
Cartesian oval as their envelopes. In fact, both are consistent with the de¢nition
of Cartesian ovals given by Gomes Teixeira [23, p. 233]:

L'enveloppe d'un cercle variable dont le centre parcourt la
circonfërence d'un autre cercle donnë et dont le rayon varie
proportionnellement a© la distance de son centre a© un point

*In interpreting this as an anticaustic, we tacitly assume that the source lies inside the refract-
ing sphere (r > 1), and hence the entire wavefront suffers only a single refraction. If r < 1, only a
portion of the wavefront suffers refraction (in fact, it is refracted twice ö first on entering the
sphere, and subsequently on emerging from it).

MINKOWSKI GEOMETRIC ALGEBRA OF COMPLEX SETS 303



¢xe est un couple d'ovales de Descartes.

We can now state a new and especially succinct de¢nition: a Cartesian oval is the
boundary of the Minkowski product of two circles.

Finally, we mention the noteworthy special case k2 � 1. In this case, the Cartesian
oval degenerates into a limac° on of Pascal,

� �xÿ 1�2 � y2 ÿ 1 �2 ÿ 4r2�x2 � y2� � 0 ;

which is the anticaustic for re£ection of spherical waves by a spherical surface. The
limac° on of Pascal is evidently the boundary of the Minkowski product of two circles,
one of which passes through the origin. In addition to double points at the circular
points at in¢nity, the limac° on also has an af¢ne double point at the origin, and
is thus a rational curve. The af¢ne double point is a crunode (self-intersection)
for r < 1, and an acnode (isolated real point) for r > 1. Figure 9 shows these
two forms of limac° on, as the envelopes of families of circles. Exceptionally, when
r � 1, both circles A and B in the Minkowski product pass through the origin,
and the af¢ne double point of the limac° on is a cusp ^ this form, known as the
cardioid, is shown in Figure 10.

6.6. MULTIPLICATION BY CIRCLES ^ ANTICAUSTICS

We have seen above that the Minkowski product of two circles generates a region
bounded by a Cartesian oval, which is the anticaustic for refraction of a spherical
wave by a spherical surface. In their normalized descriptions, both circles have center
1, and radii r (the radius of the refracting sphere) and kÿ1 (where k � q=p is the ratio

Figure 8. The two one-parameter families of circles (18) and (19), de¢ning the Minkowski product of two
circles (of radii 0.5 and 1.25) that do not pass through the origin, with the same Cartesian oval as their
envelopes.
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of the exterior/interior refractive indices). The point source of the spherical waves is
situated at the origin.

We now show that this construction easily generalizes to yield anticaustics for the
refraction of spherical waves by more complicated surfaces.*

PROPOSITION 6. Let A be a smooth curve in the complex plane, and B be the circle
with center 1 and radius kÿ1, where k is the ratio of refractive indices on each side
of A. Then @�A 
 B� is ordinarily (a subset of) the anticaustic for refraction of
spherical waves from the origin by the interface A.

Figure 9. Two forms of the limac° on of Pascal as the boundary of a Minkowski product of two circles, when
one of the circles passes through the origin.

Figure 10. The cardioid as the boundary of a Minkowski product of two circles, when both circles pass
through the origin.

*It is understood that we are considering surfaces of revolution, with the point source situated
on the symmetry axis, so we need only consider a plane section through this axis.
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Proof. Let A be described by the parametric curve z�t�. Then the optical path
length ` from the origin to x� iy, via the curve point z�t�, is

` � p jz�t�j � q jx� iyÿ z�t�j :
Setting ` � 0 and squaring, we obtain a one-parameter family of circles

f�x; y; t� � jz�t�j2 ÿ k2jx� iyÿ z�t�j2 � 0 ; �20�
and the anticaustic for refraction of spherical waves from the origin by A is the
envelope of this family. Now, for each t, f�x; y; t� � 0 describes the circle with center
z�t� and radius kÿ1jz�t�j, which can be obtained by multiplying z�t� and the circle B.
The family of circles (20) is thus the same as fz�t�g 
 B for all t, and the union
of all these circles is the Minkowski product A
 B. In `simple' cases, such as prod-
ucts of lines and circles, the boundary @�A 
 B� is identical to the envelope of
the family of circles. When A is a general curve, however, we must allow for
the possibility that: (i) portions of the envelope lie in the interior of the region
A
 B; and (ii) in exceptional circumstances, portions of individual members of
the family (which are not considered part of the envelope) may contribute to the
boundary of A
 B. Thus, for a general curve A and circle B, we qualify equating
@�A 
 B� with the anticaustic by saying `ordinarily' and `a subset of' in
Proposition 6. &

For further details on anticaustics in geometrical optics, see [7, 14, 15].

6.7. FURTHER MINKOWSKI PRODUCTS

Many other interesting geometries can be generated as Minkowski products of
`simple' curves ^ in this section, we present a few illustrative examples of the products
of conics (ellipses and hyperbolas) with circles.

Figure 11 shows two instances of the Minkowski product of an ellipse and a circle.
Here, the ellipse is de¢ned by the equation �x=4�2 � y2 � 1, while the circle is centered
at 1 and has radius r. On the left in Figure 11, we show the one-parameter family of
circles comprising this product when r � 1. In this case, the Minkowski-product
boundary is an oval of Cassini [36, 37] ^ an algebraic curve of degree 4 that can
be described by the bipolar equation

r1r2 � k2 �21�
with respect to two distinct poles. For a circle of radius r � 2, theMinkowski product
exhibits the interesting form shown that is on the right in Figure 11 (the plot has been
scaled by 1=2 in this illustration).

The next example is theMinkowski product of a hyperbola and a circle. SupposeA
is the hyperbola de¢ned by the equation x2 ÿ y2 � 1, and B is the circle of radius r
centered at 1. Figure 12 illustrates the one-parameter family of circles that comprise
the Minkowski product A
 B, for r � 1 and r � 2. In the case r � 1 (shown on the
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left), the boundary of the Minkowski product is a lemniscate of Bernoulli, which is
actually a special case of the oval of Cassini, corresponding to a value for k in
Equation (21) equal to half the distance between the two poles of the bipolar
coordinate system.

We have focused here on Minkowski products of simple one-dimensional sets
(loci). It is not dif¢cult, however, to deduce conclusions about Minkowski products
of the regions (i.e., two-dimensional sets) bounded by such loci. For example, if
A and B are circular disks, one can easily see that the product A
 B is the
simply-connected region contained within the outer loop of the Cartesian oval
de¢ned by the product of the circles @A and @B.

6.8. MINKOWSKI POWERS, ROOTS, AND FACTORIZATIONS

Adopting an algebraic perspective, the Minkowski product operation allows a
meaningful consideration, under appropriate conditions, of the powers, roots,
and factorizations of complex sets. Hence, the nthMinkowski powerAn of a complex
setA is not the set of values an where a 2 A, but rather the values a1a2 . . . an where the
ai are independently chosen from A. Correspondingly, the n-th Minkowski root A1=n

of a set A is de¢ned by the property that

f z1z2 � � � zn j zi 2 A1=n for i � 1; . . . ; n g � A :

Figure 11. Minkowski product of an ellipse and circles with radii 1 and 2.

Figure 12. Minkowski product of a hyperbola and circles with radii 1 and 2
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This de¢nition is rather indirect: it is not clear, for example, that there is a unique set
A1=n satisfying it. Indeed, a multiplicity of nth Minkowski roots of a given complex
set A would not be surprising, since we know there are n distinct roots in the case
that A is a singleton set.

In order to discuss theMinkowski factorization of a set A, we must ¢rst specify the
domain in which the factors or `prime' sets reside. Of course, this speci¢cation will
in£uence the factorizability of A. We should also mention, in this context, that
singleton sets amount to scalars in the geometric algebra: since any set is divisible
by any singleton, except f0g, we do not count them as factors. If we take simple
curves (lines and circles) as our primes, the results of Section 6 already provide sev-
eral examples of such Minkowski factorizations.

The computation of Minkowski powers, roots, or factorizations of general
complex sets is evidently a nontrivial task that deserves further study.

7. Minkowski Division

As noted in Section 2, the Minkowski division A� B is just the Minkowski product
of A with the `reciprocal set' Bÿ1 of B. However, division and reciprocal sets
are worthy of study in their own right. For example, Mo« bius transformations
can be built up from additions, multiplications, and reciprocations.

First, if A is a smooth curve C in the complex plane and B is the vertical line
through 1, the Minkowski division A� B yields the region bounded by the pedal
curve of C with respect to the origin. This can be regarded as the converse of
Proposition 3, concerning the product A
 B of the two sets; the quali¢cations made
there also apply in the division context. Since Bÿ1 is the circle with the interval � 0; 1 �
as diameter, @�A � B� can be computed as the envelope of the family of circles gen-
erated by multiplying Bÿ1 by each point of C. Introducing a parametric represen-
tation for C, and invoking the usual envelope method, one can show that the
point on each circle that contributes to the envelope is the foot point from the origin
to a tangent line of C.

In the context of geometrical optics, one can design the mirror that yields a given
anticaustic C by taking the Minkowski product of C and the vertical line through
1
2. On the other hand, given a mirror C, the Minkowski division of C by the vertical
line through 1

2 gives the anticaustic for re£ection by C. This is an immediate conse-
quence of Proposition 6, and the fact that the reciprocal Bÿ1 of the vertical line
through 1

2 is the circle centered at 1 with radius 1 (note that the radius of this circle
represents the ratio of refractive indices; a ratio of 1 corresponds to the case of
re£ection).

Now consider Minkowski division by a circle. SupposeA is a given curve C in the
complex plane, and B is a circle normalized to have center at 1. In order to compute
A� B, we ¢rst need to calculate the reciprocal Bÿ1. If B is of radius r, the reciprocal
Bÿ1 is the circle centered at 1=�1ÿ r2� of radius r=j1ÿ r2j. We can then apply the
normalization procedure to Bÿ1 by taking a scalar multiplication with 1ÿ r2 to

308 RIDA T. FAROUKI ET AL.



obtain the original circle B. Hence, the Minkowski division A� B is just a scaled
version of the Minkowski product A
 B, as follows:

A� B � 1
1ÿ r2

� �

A
 B :

So, up to scaling, the Minkowski division A� B also generates the anticaustic for
refraction by A, with the same ratio of refractive indices.

Suppose we restrict the operands ofMinkowski products and divisions to lines and
circles. It is then worth investigating the behavior of the Minkowski product under
the conformal map z 7! 1=z. Generally, the reciprocal of the Minkowski product
A
 B is the Minkowski product of the reciprocal sets of A and B, that is,

�A 
 B�ÿ1 � Aÿ1 
 Bÿ1 : �22�
This relation makes it easy to compute the reciprocals of some special curves. For
example, if A and B are both lines that do not pass through the origin, we can apply
(22) to compute the reciprocal of the parabola @�A 
 B�. Since the reciprocal of
a line is a circle passing through the origin, the right hand side of (22) is a cardioid,
a special case of the limac° on of Pascal (see Section 6.5).

Table I lists further interesting results, which can be easily checked using
Equation (22). Note that Cartesian ovals have two shape parameters, r and k,
in Equation (17). As mentioned above, although the map z 7! 1=z transforms a circle
centered at 1 into a circle with different center, we can transform it into the original
circle by simply scaling. Thus, the two Cartesian ovals in the last row of Table I
are the same Cartesian oval with different scales.

Consider now the relationship between Minkowski products/divisions and the
Mo« bius transformation M: z! w de¢ned by

w � M�z� � az� b
cz� d

; �23�

(where ad 6� bc) ^ speci¢cally, for cases with lines or circles as the operandsA and B.
As is well-known [9, 47, 52], Mo« bius transformations map the set of all lines and
circles in the complex plane into itself. Thus, given two Mo« bius transformations
M and N, the Minkowski product M�A� 
N�B� is one of the cases discussed
previously, and one can easily identify qualitative and quantitative relations between
A
 B and M�A� 
N�B�.

On the other hand, it is also interesting to investigate the effect of Mo« bius
transformations on the results of Minkowski products, rather than on their
operands, i.e., to identify relationships between M�A 
 B� and A
 B. Now any
Mo« bius transform can be decomposed into the simpler steps of scalar addition,
scalar multiplication, and inversion. If M is a scalar multiplication, it can be applied
to just one of the operands ^ i.e.,

M�A 
 B� � M�A� 
 B � A
M�B� ;
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whereas if M is an inversion, we must apply it to both operands ^ i.e.,

M�A 
 B� � M�A� 
M�B� :

WhenM involves both scalar addition and inversion, however, the situation is more
involved because the inverses of a given set and of a translated instance of that set do
not have a straightforward relationship.

The results in Table I are based upon a speci¢c location of the origin in relation to
A
 B ^ namely, a focus of the conics, and a pole of the Cartesian oval. Inversion
with respect to a different point ^ such as the singular point z � ÿd=c of (23) ^ will
distort the algebraic and geometric symmetries of A
 B in mapping it to
M�A 
 B�, and thus yields more complicated results. Thus, complex sets bounded
by conics and Cartesian ovals (and their special instances) are not mapped into each
other by (23), unless d � 0.

8. Computational Considerations

In the preceding sections, we presented examples of Minkowski products with
`simple' operands (lines and circles), in which closed-form expressions for the
Minkowski-product boundary can be obtained. As with Minkowski sums, however,
the Minkowski products of general curved sets do not admit simple closed-form
solutions: they will typically require extensive computations for their boundary
evaluation ^ see, for example, [33].

We now make some fundamental observations concerning the evaluation of
Minkowski products. Speci¢cally, we present a geometrical condition that pairs
of `corresponding points' on two smooth curves must satisfy, if they are to yield
boundary points in the Minkowski product of those curves.

Algorithms for computing Minkowski sums ^ especially those based on the envel-
ope approach ^ usually rely [33] upon the following result:

PROPOSITION 7.Let c�t� and d�u� be regular curves in the complex plane. If the pair
of points c�t0� and d�u0� on these curves contributes to the boundary of theirMinkowski
sum c�t� � d�u�, the two curves must have parallel tangent (or normal) vectors at these
points ^ i.e., for some real nonzero l we have

c0�t0� � l d0�u0� :

Table I. Reciprocals of conics and Cartesian ovals.
@�A 
 B� A B @�Aÿ1 
 Bÿ1�
parabola line 6 3 0 line 6 3 0 cardioid
ellipse circle, r > 1 line 6 3 0 limac° on with acnode
hyperbola circle, r < 1 line 6 3 0 limac° on with crunode
Cartesian oval circle 6 3 0 circle 6 3 0 Cartesian oval
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We now present an analogous necessary condition that characterizes pairs of
points on two curves that contribute to their Minkowski product boundary:

PROPOSITION 8. Let c�t� and d�u� be regular curves in the complex plane. If the pair
of points c�t0� and d�u0� on these curves contributes to the boundary of theirMinkowski
product c�t� 
 d�u�, the condition

c0�t0�
c�t0� � l

d0�u0�
d�u0� �24�

must be satis¢ed for some real nonzero l.

Geometrically, the condition (24) states that pairs of corresponding points on the
two curves, which may contribute to the Minkowski product boundary, are ident-
i¢ed by the fact that the angle between the curve tangent vector and position vector
must be equal at those points. Whereas Minkowski sums are translation invariant,
the location of the two operands relative to the origin of the complex plane clearly
plays a key role in Minkowski products.

An intuitive means to prove the condition (24) is to introduce a mapping of the
complex plane by the complex logarithm function. Roughly speaking, the logarithm
transforms Minkowski products into Minkowski sums. Taking the logarithm of the
Minkowski product c�t� 
 d�u�, we have

log�c�t� 
 d�u�� � �log c�t�� � �log d�u�� : �25�
Thus, Proposition 8 is a straightforward consequence of Proposition 7, since the
tangents to the curves log c�t� and log d�u� are c0�t�=c�t� and d0�u�=d�u�. However,
the complex logarithm is a multi-valued function,

log z � log jzj � i �arg z� 2pk� for k � 0; 1; 2; . . . ;

and proper interpretation of (25) requires a careful determination of which branch of
the logarithm should be chosen along each of the curves.

To avoid these technical dif¢culties, we now provide a direct proof of (24) using
the silhouette construction of envelopes.

Proof of Proposition 8. Suppose two sets A and B are de¢ned by the trace of two
curves, c�t� � x1�t� � iy1�t� and d�u� � x2�u� � iy2�u�, respectively. As indicated in
Proposition 3 and Proposition 6, the boundary @�A 
 B� of their Minkowski product
is ordinarily (a subset of) the envelope of the one-parameter family of curves de¢ned
by c�t� 
 B (or, alternatively, by A
 d�u�). Thus, we shall identify the condition for
points c�t0� and d�u0� to contribute to the envelope of this family of curves.

Consider the three-dimensional surface r�t; u� de¢ned by

r�t; u� � c�t� d�u� ; t� 	 2 C�R
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or, equivalently,

r�t; u� � x1�t�x2�u� ÿ y1�t�y2�u� ; x1�t�y2�u� � y1�t�x2�u� ; t
� 	 2 R3 :

We can imagine this surface to be obtained by `stacking' each member t of the curve
family c�t� 
 B at a height z � t along the z-axis. The envelope of the family is then
the projection of the silhouette curve of the surface r�t; u�, viewed along the z-axis,
onto the �x; y� plane.

The condition for a point of r�t; u� to lie on the silhouette curve is that the surface
normal vector be perpendicular to the z direction at that point. Since the partial
derivatives of r�t; u� are given* by

rt � x01x2 ÿ y01y2 ; x
0
1y2 � y01x2 ; 1

� 	
;

ru � x1x02 ÿ y1y02 ; x1y
0
2 � y1x02 ; 0

� 	
;

the surface normal has the direction of rt � ru, namely

rt � ru � ÿx1y02 ÿ y1x02 ; x1x
0
2 ÿ y1y02 ;

�
�x01x2 ÿ y01y2��x1y02 � y1x02� ÿ �x01y2 � y01x2��x1x02 ÿ y1y02�

	
:

Now if rt � ru is orthogonal to the z direction, its z component must vanish. By
expanding and rearranging, this gives the condition

�x1x01 � y1y01��x2y02 ÿ x02y2� ÿ �x2x02 � y2y02��x1y01 ÿ x01y1� � 0 ;

which implies that

x1x01 � y1y01 : x1y01 ÿ x01y1 � x2x02 � y2y02 : x2y02 ÿ x02y2 :

Hence, there is a nonzero real number m such that

�x01 � iy01��x1 ÿ iy1� � m�x02 � iy02��x2 ÿ iy2� ;
and by choosing m � l�x21 � y21�=�x22 � y22�, we obtain the condition (24). &

Based on Proposition 8, an algorithm for computing the boundary of the
Minkowski product of two curves can be developed by fairly straightforward modi-
¢cations of the Minkowski sum algorithm described in [33]. Basically, we step along
the curve c�t�, and use condition (24) to identify corresponding points on d�u� that
(may) contribute to the Minkowski-product boundary. A preprocessing step may
be invoked to ¢nd corresponding intervals for the parameters along the two curves
(in the case of Minkowski sums, this is based on analysis of the Gauss maps of
the two curves; for Minkowski products, an analogous `topological analysis' must
be based on condition (24)).

The outcome of this process is, in general, a collection of (approximated) curve
segments ^ of which some are elements of the Minkowski-product boundary, while
the remainder lie in the interior of the Minkowski product. The ¢nal step is thus

*We drop the parameters �t; u� henceforth, since they can be inferred by context.
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to identify and discard the latter elements, and organize the true boundary elements
into nested sequences of oriented loops: this can be done in substantially the same
manner as for Minkowski sums [33].

Finally, we note that the above discussion is based upon the assumption that the
operands c�t� and d�u� are both smooth (i.e., tangent-continuous). However, appro-
priate provisions can be introduced to accommodate also the case of tangent-
discontinuous curves. We hope to give a detailed algorithm description, addressing
all these considerations, in a forthcoming paper.

9. Closure

The geometric algebra of complex sets under the Minkowski sum and product oper-
ations is an attractive and fertile ¢eld of investigation, with wide-ranging potential
applications. In this introductory study, we could only address basic foundations
and preliminary results in its systematic development.

Beyond the closed-form results for `simple' operands derived in Sections 6 and 7, a
comprehensive study of Minkowski products for general operands is needed,
together with ef¢cient evaluation algorithms: the geometrical condition of Section 8
offers a promising point of departure for these purposes. Another important topic
is evaluation of the `implicit' sets described in Section 4, and the elaboration of their
relationship with Minkowski combinations. Some of these issues are addressed in a
companion paper [17].

Other areas that merit further investigation are the problems arising from an
algebraic perspective ^ the Minkowski powers, roots, and factorizations that were
mentioned in Section 6.8 ^ and the behavior of Minkowski combinations under
Mo« bius transformations and other conformal mappings (see Section 7). We hope
to address some of these issues in subsequent papers.

Acknowledgement

This work was supported in part by the National Science Foundation under grant
CCR^9902669.

References

1. Artin, E.: Geometric Algebra, Wiley, New York, 1957.
2. Bernoulli, J.: Line� cycloidales, evolut�, ant-evolut�, caustic�, anti-caustic�,

pericaustic�, Acta Eruditorum, May 1692.
3. Boltyanskii, V. G.: Envelopes, Macmillan, New York, 1964.
4. Bruce, J. W. and Giblin, P. J.: What is an envelope?,Math. Gazette 65 (1981), 186^192.
5. Bruce, J. W. and Giblin, P. J.: Curves and Singularities, Cambridge Univ. Press, 1984.
6. Cayley, A.: A memoir upon caustics, Phil. Trans. Roy. Soc. London 147, 273^312;

Supplementary memoir upon caustics, Phil. Trans. Roy. Soc. London 157 (1857), 7^16.

MINKOWSKI GEOMETRIC ALGEBRA OF COMPLEX SETS 313



7. Chastang, J-C. A. and Farouki, R. T.: The mathematical evolution of wavefronts, Optics
Photonics News 3 (1992), 20^23.

8. Choi, H. I., Han, C. Y., Moon, H. P., Roh, K. H. and Wee, N-S.: Medial axis transform
and offset curves by Minkowski Pythagorean hodograph curves, Comput. Aided Design
31 (1999), 59^72.

9. Deaux, R.: Introduction to the Geometry of Complex Numbers (translated from the
French by H. Eves), F. Ungar, New York, 1956.

10. Dorf, R. C.: Modern Control Systems (2nd edn), Addison-Wesley, Reading. MA, 1974.
11. Elber, G., Lee, I-K. and Kim, M-S.: Comparing offset curve approximation methods,

IEEE Comput. Graphics Appl. 17(3) (1997), 62^71.
12. Farin, G.: Curves and Surfaces for CAGD (3rd edn), Academic Press, Boston, 1993.
13. Farouki, R. T.: The conformal map z! z2 of the hodograph plane,Comput. Aided Geom.

Design 11 (1994), 363^390.
14. Farouki, R. T. and Chastang, J-C. A.: Curves and surfaces in geometrical optics, In:

T. Lyche and L. L. Schumaker, (eds), Mathematical Methods in Computer Aided Geo-
metric Design II, Academic Press, New York, pp. 239^260.

15. Farouki, R. T. and Chastang, J-C. A.: Exact equations of `simple' wavefronts, Optik 91
(1992), 109^121.

16. Farouki, R. T. and Johnstone, J. K.: Computing point/curve and curve/curve bisectors,
In: R. B. Fisher, (ed), Design and Application of Curves and Surfaces (The Mathematics
of Surfaces V) Oxford Univ. Press, 1994, pp. 327^354.

17. Farouki, R. T., Moon, H. P. and Ravani, B.: Algorithms for Minkowski products and
implicitly-de¢ned complex sets, Adv. Comput. Math. 13 (2000), 199^229.

18. Farouki, R. T. and Neff, C. A.: Analytic properties of plane offset curves & Algebraic
properties of plane offset curves, Comput. Aided Geom. Design 7 (1990), 83^99, 101^127.

19. Farouki, R. T. and Neff, C. A.: Hermite interpolation by Pythagorean-hodograph
quintics, Math. Comput. 64 (1995), 1589^1609.

20. Farouki, R. T. and Sakkalis, T.: Pythagorean hodographs, IBM J. Res. Develop. 34
(1990), 736^752.

21. Fowler, R. H.: The Elementary Differential Geometry of Plane Curves, Cambridge Univ.
Press, 1929.

22. Ghosh, P. K.: A mathematical model for shape description using Minkowski operators,
Comput. Vision, Graphics, Image Process. 44 (1988), 239^269.
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