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By the two tangent theorem we have

AT1 = AT
′′

1 = AP − PT
′′

1 ,

BT1 = BT
′

1 = BP − PT
′

1,

so that
AB = AT1 + BT1 = AP + BP − PT

′′

1 − PT
′

1.

SincePT
′′

1 = PT
′

1,

AB = AP + BP − 2PT
′

1.

In the same way

CD = CP + DP − 2PT
′

3.

Adding the last two equalities yields

AB + CD = AC + BD − 2T
′

1T
′

3.
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Figure 4. Tangency points of the four incircles

In the same way we get

BC + DA = AC + BD − 2T
′

2T
′

4.

Thus

AB + CD − BC − DA = −2
(
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′
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)

.

The quadrilateral has an incircle if and only ifAB + CD = BC + DA. Hence it
is a tangential quadrilateral if and only if
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Note that bothT
′

1T
′

3 = T
′

2T
′

4 andT
′

1T
′

2 = T
′

3T
′

4 are characterizations of tangential
quadrilaterals. It was the first of these two that was proved in [18]. �


