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NEW PROOF OF A MINIMUM PROPERTY OF THE REGULAR n-GON
L. F. TorH, Budapest, Hungary

J. Kurschék gives in his paper Uber dem Kreis ein- und umgeschriebene
Vielecke* among others a complete and entirely elementary geometrical proof
of the well known fact according to which the regular #-gon P, has a minimal
area among all n-gons P circumscribed about a circle ¢. In this proof P, is
carried, after a dismemberment and a suitable reassembly, in #—1 steps into
P, so that the area increases at every step.

In this note we give an extremely simple proof,} which appears to be new,
showing immediately that if P, is not regular, then P,> P,, where the area is
denoted by the same symbol as the domain.

Consider the circle C circumscribed about P,. We show that already for the
part P, C of P, lying in C we have

P,-C> P,
We have P,.-C=C—ns+(sis2Fsas3+ + + + +5,51), where we denote by

S1 S2, * + +, Sy the circular sections of C cut off by the consecutive sides of P,,
and by s the circular section of C cut off by a tangent to ¢. Hence

P,-CzC — ns.
Then
P,z2P,C2C—ns=P"P,
Equality holds in P, P,C resp. in P,C2 P, only if no vertex of P, lies in

the outside resp. in the inside of C; this completes the proof.

BINOMIAL COEFFICIENTS MODULO A PRIME
N. J. FiINE, University of Pennsylvania
The following theorem, although given by Lucas in his Theorie des Nombres
(pp. 417-420), does not appear to be as widely known as it deserves to be:

THEOREM 1. Let p be a prime, and let
M =M+ Mip + Mop®+ - - - + Mip* 0= M. <),
N = No+ Nip + Nop? 4 - - - + Nipp* 0 = N < p).

* Mathematische Annalen 30 (1887), pp. 578-581.

t As P. Szész remarked [Bemerkung zu einer Arbeit von K. Kiirschik, Matematikai es
Fizikai Lapok XLIV (1937), p. 167, note 3] Kiirschdk’s proof is independent of the axiom of
parallels. This advantage is preserved in the present proof.
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Then
M M\ [/ M\ [ M, M,
()= GGG+ (3,) e
N No Nl N2 Nk
We offer a short proof of the above theorem:
MM &
5 (y)#" = at o = I {a+ 7
N=0 N r=0
k
= ]I (1 + #) (mod ),
r=0
k My M'
-1z ()=t
r=0 \eg,=0 \ §r
M kM,
-z}
N=0 r=0 \ §r
where the inner sum is taken over all sets (so, 51, * * - , s&) such that>_r_gs,p*=N.

But 0=s,< M, <p, so there is at most one such set, given by s,=N, (0=5r=<k)
if every N,=< M,; if not, the sum is zero. The theorem follows by equating co-

efficients of x¥, since

M,
(Nr) =0 for N,> M,.

THEOREM 2. Let T (M) be the number of integers N not exceeding M for which

(fvl) # 0 (mod p).
Then

(M) = IkI(Mr+ 1.

Proof: Since M, <p, there are M,+1 values of N,, given by 0N, < M, for

which

()0,

and these are the only ones.

THEOREM 3. A necessary and sufficient condition that all the binomial coeffi-

cients

(M) O<KN<<M
N ’ ’
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be divisible by p is that M be a power of p.

Proof: The function T'(M) takes the value 2 if and only if one of the M, is 1
and all the others are 0.
In the opposite direction, we may ask for what values of M none of the

binomial coefficients
M
( ), 0=sN=M,
N

are divisible by p.

THEOREM 4. 4 necessary and sufficient condition that none of the binomial co-
efficients of order M, with

M=My+ Mip+ .-+ Mip* O=M<p;Mr>0)
be divisible by p is that M,=p—1 for r <k.
Proof: Let M* =M — M;p*. Suppose first that T(M)=M+1. Then
Mip*+ M*+1=M+1=TM) = M+ DT(M*) £ (Mr+ 1)(M*+ 1)
= Mi(M*+ 1) + M* + 1 < Myp* + M* + 1.

From this chain of inequalities it follows that M*=p*—1. Conversely, if
M*=p*—1, then

T(M) = (My+ 1)p*=Mip*+M*+1 =M+ 1.

Our last theorem deals with the “probability” that a binomial coefficient
chosen “at random” will be divisible by p. More precisely, consider the
3(m+1)(m+2) binomial coefficients

M
( ), O=N=Mz=m,
N

and let Q(p; m) be the fraction of these which are not divisible by p.

THEOREM 5. For every prime p, lim Q(p; m)=0.

Proof: For £=0, let
pk—1
a@=2ﬂwh+0mwph-0=glﬂM)
=0

Clearly G(0) =1. Using the notation introduced in the proof of the preceding
theorem, we have
i1

2 T(M)

M=0

G(k + 1)

p—1 pk—1

> X M+ )T

Mp=0 M°*=0
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{Z o + 1)‘} {Z TG}

M,=0 M*=0
= 3p(p + DG(k).

It follows immediately that G(k) = (3p(p+1))% Now suppose that p* <m < prti,
Then

2
Q(p;m) = Do £ D) G(k+ 1) <2p7*G(k + 1) = 2p72(Gp(p + 1)+

o+ (E2Y:

]

which tends to 0 with increasing m.

By an obvious extension it follows that, given an arbitrary finite set of
primes, it is “virtually certain” that a binomial coefficient chosen at random
will be divisible by all the primes in the set.

VOLUME OF AN n-DIMENSIONAL SPHERE
H. P. Evans, University of Wisconsin

1. Introduction. That certain definite integrals may be evaluated from prob-
ability considerations is well known [1]. It will be shown that the evaluation of
the multiple integral for the volume of an #-dimensional sphere may be obtained
from the probability distribution of the sum of squares of # independent and
normally distributed random variables, all having the same standard deviation
o and mean zero. Since the study of this distribution is a standard topic for
courses in both probability theory [1] and mathematical statistics [2, 3, 4],
and since the formula for the volume of an #-dimensional sphere is derivable by
the methods of advanced calculus [5, 6], a consequence of the present note is
the establishment of a further connection between the methods of probability
theory and the methods of advanced calculus,

2. Analytical development. Let x; (=1, 2, - - + , n) be # independent and
normally distributed random variables, each having the standard deviation ¢
and the mean value zero. If we put x =Y &7, where the summation is from 1 to 7,
it is known from probability theory that the probability density function for
x is

2—n/2
flx) = .S%U_Z__ gnlr1lg-al x>0,

e
f®) =0, x =< 0.

From the given distribution of the x;’s it follows that the distribution function

for x=) % is



