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Module-1: Riemann’s Theorem

1 Introduction

A point z = 2 is called a regular point or an ordinary point of a function f(z)
if f(z) is analytic at zp, otherwise z is called a singular point or a singularity of the
function f(z). Basically, there are two types of singularities : (i) isolated singularity; (ii)
non-isolated singularity.

Isolated Singularity

A point z = zy is said to be an isolated singularity of a function f(z) if there exists a
deleted neighbourhood of zy in which the function is analytic. In other words, a point z =
2o is said to be an isolated singularity of a function f(z) if there exists a neighbourhood

of zp which contains no other singular point of f(z) except zo.

For the function f(z) =1/z, z = 0is an isolated singular point, since f(z) is analytic
in the open disc 0 <| z |[< r, r > 0, and for g(z) = m, z = 1,2 are isolated
singular points since the function is analytic in the annular region 1 <| z |< 2.
Non-isolated Singularity
A point z = zj is called non-isolated singularity of a function f(z) if every neighbourhood

of zy contains at least one singularity of f(z) other than z,.

For the function f(z) = Log z, the principal logarithm, z = 0 is a non-isolated
singularity, and moreover (—oo, 0] is the set of all non-isolated singularities of the function.
Also, for g(z) = 1/sin(1/z), z = 1/nm, n € I are the singular points, while 0 is non-

isolated singularity as each neighbourhood of z = 0 contains a singularity of g(z).

Isolated singularities are classified into (i) removable singularity; (ii) pole; and (iii)
essential singularity. If zg is an isolated singularity of f(z), then in some deleted neigh-

bourhood of zy the function f(z) is analytic and hence its Laurent series expansion exists
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as
F(z) =) an(z—20)"+ ) balz—20)", 0<[z—z|<r
n=0 n=1

where r is the distance from zj to the nearest singularity of f(z) other than z, itself. If z
is the only singularity, then r = co. The portion of the series involving negative powers
of z— zy, i.e. Y77 by(z — z9) ™™ is called the principal part of f at zo, while the series of
non-negative powers of z — z, i.e. Y a,(z — 2)™ is called the regular part of f at z.
Removable singularity

If all the coefficients b, in the principal part are zero, then z, is called a removable
singularity of f. In this case we can make f regular in | z — 2y |< r by suitably defining
its value at zg.

As for example, we consider the function

s a0
f(z) =
0, 2#% 0.

The function is analytic everywhere except at z = 0. The Laurent expansion about z = 0

has the form

sin 2

ey = =
%0l 23 2P
Tz 31 5l
22 24

Since no negative power of z appears, the point z = 0 is a removable singularity of f.
Pole

If the principal part of f at z; contains a finite number of term, then f is said to have a
pole at zg. If b,, (m > 1) is the last non-vanishing coefficient in the principal part then

we have

> b b b
f(2) :Zan(z—zo)"+ L 2 _ 4+
n=0

—— 0< — <
z—2z0 (22— 20)? (2 — z0)™’ [z—2l<m,

and the pole is said to be of order m. If m = 1, then we call the pole as a simple pole.
The function

) = 22 —3z+4



has a simple pole at z = 3.

Also the function

e
has a pole of order 2 at z = 2, since
e 62€z—2
W= o T
2 2 2 2
= ¢ T +€—+e—(z—2)+..., 0<|z—-2|<oc.

(z—2)2 z-2 2! 3
Essential singularity
If the principal part of f at zy contains infinitely many nonzero terms, then zq is called
an essential singularity of f.

As for example, the function

fz) = e
1 1
= 1+ -4 =99". A4 + ..., 0<] 2z ]< o0,
z 2122 nlzn
has an essential singularity at z = 0.
Remark 1. Let us consider the expression
iiJrii, 1<]z|<3.
n=0 3" n=1 2"

This expression has infinite number of negative powers of z. FEven then, z = 0 is not an
essential singularity. This is because the region of convergence is not a deleted neighbour-
hood of the origin. In fact, it is the Laurent expansion of the function % in the

annular region 1 <| z |< 3. Actually, f has simple poles at z =1 and z = 3.

Alternate Definition of Removable singularity, Pole and Essential singular-
ity
A singular point zg of the function f(z) is called a removable singularity of f(z) if Zlgr; f(2)
exists finitely. 0

A singular point zy of the function f(z) is called a pole of f(z) of multiplicity n if
Zh_)rlzq (z—20)"f(z) =A #0.If n =1, z is called a simple pole.

0A singular point zy of the function f(z) is called an essential singularity of f(z) if

there exists no finite value of n for which lim (z — zp)" f(z) = A #0.
Z—r20
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Theorem 1. The function f has a pole of order m at zy if and only if in some neigh-
bourhood of zy, f can be expressed as

¢(2)
(2 — 20)™’

where ¢(z) is analytic at zo and ¢(zo) # 0.

flz) =

Proof. First assume that zy is a pole of f of order m. Then in some neighbourhood of

20, f has a Laurent series expansion of the form

f(z) = Z%(Z —20)" + Z bn(z — 20)7", where by, # 0.
n=0 n=1
Putting v(z) = Z an(z — 29)" we see that

n=0
o bl bQ bm

flz) = V(Z)+z—z0+(z—zo)2+'”Jr(z—zo)m
(e z)"v(2) 4+ bz —20)" T+ L by
B (2= 20)7
e

(2 — 29)™’

where ¢(z) = (2 — 20)"v(2) + bi(z — 29)™ ' + ... + by, is analytic at zy and ¢(z9) =
b # 0.

Next we assume that in some neighbourhood of 2z,

¢(2)

(2 — z0)™’

f(z) =

where ¢(z) is analytic at zp and ¢(z) # 0. Expanding ¢(z) in Taylor series about zg, we

obtain

0(z) = Y anlz—z)"

= ap+ai(z—2) +as(z—2)+ ... Fam1(z—z)" + Z an(z — 29)",
where ag = ¢(z9) # 0. Thus
N P(2) . ag ai Am—1 - n—m
f(z) = o o e T T + Y an(z—2)" ",

which is the Laurent expansion of f about z,. Since ag # 0, it follows that 2, is a pole of

f of order m. This completes the proof. m



Theorem 2. (Riemann’s Theorem)
If a function f is bounded and analytic throughout a domain 0 <| z — 2z |< 6, then f is

either analytic at zy or else zy is a removable singularity of f.

Proof. Since f is analytic throughout the domain 0 <| z — 2z |< d, f can be represented

in the Laurent series about zg of the form
flz) = Z an(z — 29)" + Z bo(z — z9) ™™
n=0 n=1

Let C denote the circle | z — 2z | = r (< §). Then putting z — zy = re??, 0 <0 < 27, we

obtain

] ()

n 2w

r . .
— | ——  __dz = — + reedp, n=1,2, ...
2wt Jo (2= )0 Z =3 /0 f(zo+1e)e , N , 2,

Since f is bounded there exists a positive number M such that | f(z) |< M for all z in

the given domain. Therefore,
n 2 n
r 0\ inb r n
|bn|:—\/ flzo+re)e™dl | < — -27M = Mr™ forn=1,2, ...
2 ), 2
Since r can be chosen arbitrarily small, we have b, = 0 for n = 1,2, . .. Thus we obtain

&N Zan(z— 20)"in 0 <| z — zo |< 0.

n=0
This shows that f is either analytic at zy or else 2 is a removable singularity of f. This

proves the theorem. O

Theorem 3. If z is a pole of the function f, then lim f(z) = oo.

Z—Z20

Proof. Let zy be a pole of f of order m. Then in some neighbourhood of zy, we can write

¢(2)

(2 — 20)™’

f(z) =

where ¢(z) is analytic at zy and ¢(z9) # 0. ¢(2) being analytic at z, it is continuous at

zo. Hence, for ¢ =1 | ¢(z0) |> 0, there exists a d > 0 such that

| p(2) — P(20) | < € :%\(b(zoﬂ for | z— 2z |< 4.

Therefore,

6(2) | = 19(2) = 0(e0) + 6(z0) | 2 | 6(20) | = | 6(2) — (a0 |
> 16 | =5 | 60) | = 5 | 6(z0) | for | 2=z |< 8,
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11¢(20)|

Thus, for | z — 2p |< 0, we obtain | f(z) | > . Let G be a positive number, however

large. Then | f(2) | > G -
if ﬁztb—i?)\"[ >Gand | z— 2z |< 9,
ie. if |z—2|< <%>l/m and | z — 2 |< 6,
ie. if | z— z|< 01 where 6y = min{ (%) l/m, J}.
This means that Zlgr;() f(z) = oo. This proves the theorem. O

Theorem 4. If f(2) has an isolated singularity at z = zy and f(z) — 00 as z — 2o, then

f(2) has a pole at z = z.

Proof. Since f(z) — oo as z — zp, for a given R > 0 there exists a § > 0 such that f(z)

is analytic for 0 <| z — 2y |< 6 and
| f(2) | > R whenever 0 <|z— z |< 0.

In particular, f(z) # 0 for 0 <| z—zy |< 0 and so, g(2) = 1/f(z) is analytic and bounded
by 1/R in this deleted neighbourhood of z;. Therefore by Riemann’s theorem, g(z) has

a removable singularity at zp, and we may write

9(2) = =a1(z—2) +ag(z—2)°+ ..., 0<|z—2|<0.

Since g(z) # 0 for 0 <| z — 2 |< §, not all the coefficients of g(z) are zero. This means

that there is a k > 1 such that a; is the first nonzero coefficient of g(z). Then

k+1
Ty

g(z) = 8 = ap(z — 20)" + arp1(z — 20)
so that

ak+ak+1(z—20)+ e

(z —20)*f(2)

— ar as z — 2o,

and therefore,

lim (z — 20)" f(2) :aik # 0.

Z—20

This shows that f(z) has a pole of order k at z = zy. This proves the theorem. O



Example 1. Discuss singularities of the function

z
(z) = 2244
Solution. We have 2> +4 = (2 +2i)(z — 2i). Therefore, f(z) has singularities at z = 2i
and z = —2i. Since
. : : 2(z — 2i) 1
lim (2 — 2 —1 — 40
lim (= =207C) = by o2y —27 "

f(2) has a simple pole at z = 2i. Again since,

' . s 2(z + 21) _ 1

it follows that, f(z) has a simple pole at z = —2i.

Example 2. Classify the nature of singularity of the function

Solution. We note that z = 3 is the only singularity of f(z). To find the nature of
singularity of f(z) at z = 3, we expand f(z) in a Laurent series valid in a deleted
neighbourhood 0 <| z — 3 |< r where r is some positive number. Since
e~ ? 6—36—(z—3)
f(Z) = 1 4
(z—3) (z—3)
(Gl 1 1 1

G Go3PF Ta—3e BE—3 |

f(2) has a pole of order 4 at z = 3.
Alternatively, the result follows from the fact that

lim(z — 3)*f(z) =lime™* = 13 # 0.

z—3 z2—3 e



