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Module-1: Riemann’s Theorem

1 Introduction

A point z = z0 is called a regular point or an ordinary point of a function f(z)

if f(z) is analytic at z0, otherwise z0 is called a singular point or a singularity of the

function f(z). Basically, there are two types of singularities : (i) isolated singularity; (ii)

non-isolated singularity.

Isolated Singularity

A point z = z0 is said to be an isolated singularity of a function f(z) if there exists a

deleted neighbourhood of z0 in which the function is analytic. In other words, a point z =

z0 is said to be an isolated singularity of a function f(z) if there exists a neighbourhood

of z0 which contains no other singular point of f(z) except z0.

For the function f(z) = 1/z, z = 0 is an isolated singular point, since f(z) is analytic

in the open disc 0 <| z |< r, r > 0, and for g(z) = 1
(z−1)(z−2) , z = 1, 2 are isolated

singular points since the function is analytic in the annular region 1 <| z |< 2.

Non-isolated Singularity

A point z = z0 is called non-isolated singularity of a function f(z) if every neighbourhood

of z0 contains at least one singularity of f(z) other than z0.

For the function f(z) = Log z, the principal logarithm, z = 0 is a non-isolated

singularity, and moreover (−∞, 0] is the set of all non-isolated singularities of the function.

Also, for g(z) = 1/ sin(1/z), z = 1/nπ, n ∈ I are the singular points, while 0 is non-

isolated singularity as each neighbourhood of z = 0 contains a singularity of g(z).

Isolated singularities are classified into (i) removable singularity; (ii) pole; and (iii)

essential singularity. If z0 is an isolated singularity of f(z), then in some deleted neigh-

bourhood of z0 the function f(z) is analytic and hence its Laurent series expansion exists
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as

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n, 0 <| z − z0 |< r,

where r is the distance from z0 to the nearest singularity of f(z) other than z0 itself. If z0

is the only singularity, then r = ∞. The portion of the series involving negative powers

of z − z0, i.e.
∑∞

n=1 bn(z − z0)−n is called the principal part of f at z0, while the series of

non-negative powers of z − z0, i.e.
∑∞

n=0 an(z − z0)n is called the regular part of f at z0.

Removable singularity

If all the coefficients bn in the principal part are zero, then z0 is called a removable

singularity of f . In this case we can make f regular in | z − z0 |< r by suitably defining

its value at z0.

As for example, we consider the function

f(z) =

 sin z
z
, z 6= 0

0, z = 0.

The function is analytic everywhere except at z = 0. The Laurent expansion about z = 0

has the form

f(z) =
sin z

z

=
1

z

[
z − z3

3!
+
z5

5!
− . . .

]
= 1− z2

3!
+
z4

5!
− . . .

Since no negative power of z appears, the point z = 0 is a removable singularity of f .

Pole

If the principal part of f at z0 contains a finite number of term, then f is said to have a

pole at z0. If bm (m ≥ 1) is the last non-vanishing coefficient in the principal part then

we have

f(z) =
∞∑
n=0

an(z − z0)n +
b1

z − z0
+

b2
(z − z0)2

+ . . .+
bm

(z − z0)m
, 0 <| z − z0 |< r,

and the pole is said to be of order m. If m = 1, then we call the pole as a simple pole.

The function

f(z) =
z2 − 3z + 4

z − 3

= 3 + (z − 3) +
4

z − 3
, (z 6= 3)
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has a simple pole at z = 3.

Also the function

f(z) =
ez

(z − 2)2

has a pole of order 2 at z = 2, since

f(z) =
ez

(z − 2)2
=

e2ez−2

(z − 2)2

=
e2

(z − 2)2
+

e2

z − 2
+
e2

2!
+
e2

3!
(z − 2) + . . . , 0 <| z − 2 |<∞.

Essential singularity

If the principal part of f at z0 contains infinitely many nonzero terms, then z0 is called

an essential singularity of f .

As for example, the function

f(z) = e1/z

= 1 +
1

z
+

1

2!z2
+ . . . +

1

n!zn
+ . . . , 0 <| z |<∞,

has an essential singularity at z = 0.

Remark 1. Let us consider the expression

∞∑
n=0

zn

3n
+
∞∑
n=1

1

zn
, 1 <| z |< 3.

This expression has infinite number of negative powers of z. Even then, z = 0 is not an

essential singularity. This is because the region of convergence is not a deleted neighbour-

hood of the origin. In fact, it is the Laurent expansion of the function 2z
(1−z)(z−3) in the

annular region 1 <| z |< 3. Actually, f has simple poles at z = 1 and z = 3.

Alternate Definition of Removable singularity, Pole and Essential singular-

ity

A singular point z0 of the function f(z) is called a removable singularity of f(z) if lim
z→z0

f(z)

exists finitely.

A singular point z0 of the function f(z) is called a pole of f(z) of multiplicity n if

lim
z→z0

(z − z0)nf(z) = A 6= 0. If n = 1, z0 is called a simple pole.

A singular point z0 of the function f(z) is called an essential singularity of f(z) if

there exists no finite value of n for which lim
z→z0

(z − z0)nf(z) = A 6= 0.
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Theorem 1. The function f has a pole of order m at z0 if and only if in some neigh-

bourhood of z0, f can be expressed as

f(z) =
φ(z)

(z − z0)m
,

where φ(z) is analytic at z0 and φ(z0) 6= 0.

Proof. First assume that z0 is a pole of f of order m. Then in some neighbourhood of

z0, f has a Laurent series expansion of the form

f(z) =
∞∑
n=0

an(z − z0)n +
m∑
n=1

bn(z − z0)−n, where bm 6= 0.

Putting ν(z) =
∞∑
n=0

an(z − z0)n we see that

f(z) = ν(z) +
b1

z − z0
+

b2
(z − z0)2

+ . . . +
bm

(z − z0)m

=
(z − z0)mν(z) + b1(z − z0)m−1 + . . . + bm

(z − z0)m

=
φ(z)

(z − z0)m
,

where φ(z) = (z − z0)mν(z) + b1(z − z0)m−1 + . . . + bm is analytic at z0 and φ(z0) =

bm 6= 0.

Next we assume that in some neighbourhood of z0,

f(z) =
φ(z)

(z − z0)m
,

where φ(z) is analytic at z0 and φ(z0) 6= 0. Expanding φ(z) in Taylor series about z0, we

obtain

φ(z) =
∞∑
n=0

an(z − z0)n

= a0 + a1(z − z0) + a2(z − z0)2 + . . . + am−1(z − z0)m−1 +
∞∑
n=m

an(z − z0)n,

where a0 = φ(z0) 6= 0. Thus

f(z) =
φ(z)

(z − z0)m
=

a0
(z − z0)m

+
a1

(z − z0)m−1
+ . . . +

am−1
z − z0

+
∞∑
n=m

an(z − z0)n−m,

which is the Laurent expansion of f about z0. Since a0 6= 0, it follows that z0 is a pole of

f of order m. This completes the proof.
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Theorem 2. (Riemann’s Theorem)

If a function f is bounded and analytic throughout a domain 0 <| z − z0 |< δ, then f is

either analytic at z0 or else z0 is a removable singularity of f .

Proof. Since f is analytic throughout the domain 0 <| z − z0 |< δ, f can be represented

in the Laurent series about z0 of the form

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n.

Let C denote the circle | z − z0 | = r (< δ). Then putting z − z0 = reiθ, 0 ≤ θ ≤ 2π, we

obtain

bn =
1

2πi

∫
C

f(z)

(z − z0)−n+1
dz =

rn

2π

∫ 2π

0

f(z0 + reiθ)einθdθ, n = 1, 2, . . .

Since f is bounded there exists a positive number M such that | f(z) |≤ M for all z in

the given domain. Therefore,

| bn | =
rn

2π
|
∫ 2π

0

f(z0 + reiθ)einθdθ | ≤ rn

2π
· 2πM = Mrn for n = 1, 2, . . .

Since r can be chosen arbitrarily small, we have bn = 0 for n = 1, 2, . . . Thus we obtain

f(z) =
∞∑
n=0

an(z − z0)n in 0 <| z − z0 |< δ.

This shows that f is either analytic at z0 or else z0 is a removable singularity of f . This

proves the theorem.

Theorem 3. If z0 is a pole of the function f , then lim
z→z0

f(z) =∞.

Proof. Let z0 be a pole of f of order m. Then in some neighbourhood of z0, we can write

f(z) =
φ(z)

(z − z0)m
,

where φ(z) is analytic at z0 and φ(z0) 6= 0. φ(z) being analytic at z0, it is continuous at

z0. Hence, for ε = 1
2
| φ(z0) |> 0, there exists a δ > 0 such that

| φ(z)− φ(z0) | < ε =
1

2
| φ(z0) | for | z − z0 |< δ.

Therefore,

| φ(z) | = | φ(z)− φ(z0) + φ(z0) | ≥ | φ(z0) | − | φ(z)− φ(z0) |

> | φ(z0) | −
1

2
| φ(z0) | =

1

2
| φ(z0) | for | z − z0 |< δ.
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Thus, for | z− z0 |< δ, we obtain | f(z) | >
1
2
|φ(z0)|
|z−z0|m . Let G be a positive number, however

large. Then | f(z) | > G

if
1
2
| φ(z0) |
| z − z0 |m

> G and | z − z0 |< δ,

i.e. if | z − z0 | <
(
| φ(z0) |

2G

)1/m

and | z − z0 |< δ,

i.e. if | z − z0 |< δ1 where δ1 = min{
(
| φ(z0) |

2G

)1/m

, δ}.

This means that lim
z→z0

f(z) =∞. This proves the theorem.

Theorem 4. If f(z) has an isolated singularity at z = z0 and f(z)→∞ as z → z0, then

f(z) has a pole at z = z0.

Proof. Since f(z)→∞ as z → z0, for a given R > 0 there exists a δ > 0 such that f(z)

is analytic for 0 <| z − z0 |< δ and

| f(z) | > R whenever 0 <| z − z0 |< δ.

In particular, f(z) 6= 0 for 0 <| z−z0 |< δ and so, g(z) = 1/f(z) is analytic and bounded

by 1/R in this deleted neighbourhood of z0. Therefore by Riemann’s theorem, g(z) has

a removable singularity at z0, and we may write

g(z) =
1

f(z)
= a1(z − z0) + a2(z − z0)2 + . . . , 0 <| z − z0 |< δ.

Since g(z) 6= 0 for 0 <| z − z0 |< δ, not all the coefficients of g(z) are zero. This means

that there is a k ≥ 1 such that ak is the first nonzero coefficient of g(z). Then

g(z) =
1

f(z)
= ak(z − z0)k + ak+1(z − z0)k+1 + . . . ,

so that

1

(z − z0)kf(z)
= ak + ak+1(z − z0) + . . .

→ ak as z → z0,

and therefore,

lim
z→z0

(z − z0)kf(z) =
1

ak
6= 0.

This shows that f(z) has a pole of order k at z = z0. This proves the theorem.
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Example 1. Discuss singularities of the function

f(z) =
z

z2 + 4
.

Solution. We have z2 + 4 = (z+ 2i)(z− 2i). Therefore, f(z) has singularities at z = 2i

and z = −2i. Since

lim
z→2i

(z − 2i)f(z) = lim
z→2i

z(z − 2i)

(z + 2i)(z − 2i)
=

1

2
6= 0,

f(z) has a simple pole at z = 2i. Again since,

lim
z→−2i

(z + 2i)f(z) = lim
z→−2i

z(z + 2i)

(z + 2i)(z − 2i)
=

1

2
6= 0,

it follows that, f(z) has a simple pole at z = −2i.

Example 2. Classify the nature of singularity of the function

f(z) =
e−z

(z − 3)4
.

Solution. We note that z = 3 is the only singularity of f(z). To find the nature of

singularity of f(z) at z = 3, we expand f(z) in a Laurent series valid in a deleted

neighbourhood 0 <| z − 3 |< r where r is some positive number. Since

f(z) =
e−z

(z − 3)4
=
e−3e−(z−3)

(z − 3)4

= e−3
[

1

(z − 3)4
− 1

(z − 3)3
+

1

2!(z − 3)2
− 1

3!(z − 3)
+ . . .

]
,

f(z) has a pole of order 4 at z = 3.

Alternatively, the result follows from the fact that

lim
z→3

(z − 3)4f(z) = lim
z→3

e−z =
1

e3
6= 0.
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