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SECTORIAL COVERS FOR CURVES OF CONSTANT 
LENGTH 

BY 

JOHN E. WETZEL 

1. In answer to a question raised by Leo Moser, A. Meir proved some years ago 
that every plane arc of unit length lies in some closed semidisk of radius \. His 
elegant, unpublished argument is reproduced here with his kind permission. 

THEOREM 1 (A. Meir). Every plane arc of length L lies in some closed semidisk of 
radius L\2. 

Proof. The assertion is clear for closed curves, for such a curve plainly lies in a 
semidisk of radius L/2 centered at a point of contact of any support line of the 
curve. Let V be an arc of length L having distinct endpoints P and Q, let / be a line 
of support parallel to the line PQ and touching Y at a point JR, and let P' and Q' be 
the points symmetric to P and Q in / (Figure 1). Let O be the point in which the 

Figure 1 

lines PQ' and QP' meet /. Each point X on V lies between R and P or between R and 
Q along F , and we may suppose that X lies between R and P. Because the median 
of a triangle is shorter than the average of the lengths of the two adjacent sides, 

OX < l(XP+XQf) < KPX+XR+RQ) < \L. 

Thus F lies in the semidisk of radius L/2 and edge / centered at the point O. 
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In §3 of this note we generalize this result to circular sectors and show that there 
is a sector of area less than 0.3451L2 that can accommodate every arc of length L. 
Meir's semidisk has area 7iL2/8^0.3927L2. 

Section 2 is devoted to a characterization of circular sectors that contain a 
translate of every closed curve of length L. 

In §4 we show that the least area of a convex set that contains a translate of every 
closed curve of length L lies between 0.15544L2 and 0.15900L2, and in §5 we show 
that the least area of a convex set that contains a displacement of every arc of length 
L lies between 0.21946L2 and 0.34423ZÂ 

2. A circular sector is circumscribed about a curve if the curve lies in the sector 
and has a point on the circular boundary arc and a point on each of the boundary 
radii. We begin with a result about circular sectors that are circumscribed about a 
closed curve of length L. 

Let Csc x=csc x when 0<x<7r/2 and C s c x = l when 7TJ2<X<TT. F o r r > 0 and 
O<0<77, we denote the circular sector with radius r and vertex angle 6 by S(r, 6). 

LEMMA 2. If a circular sector S(r, 6) is circumscribed about a closed curve of 
length L, then r<(L/2) Csc 6. 

Proof. Let the sector S(r, 6)=(BAC) be circumscribed about a closed curve T 
of length L, and let X, Y, and Z be points of T on the circular arc BC and radial 
segments AB and AC, respectively. The perimeterp of AXYZ is at most L, and/? 
equals L precisely when the curve V coincides with AXYZ. Let X' and X" be the 
points symmetric to X in the lines AB and AC respectively. If 0<7r/2, then 

p = X'Y+YZ+ZX" > X'X" = 2rs in0. 

If7r/2<0<7T, then 

p = X'Y+YZ+ZX" > X'Z+ZX" > X'A+AX" = 2r. 

In either case, 

r < lp Csc 6 < \L Csc 0. 

When d is acute, the equality occurs precisely when V coincides with AXYZ and 
the points X', Z, F, and X" are collinear. When 6 is not acute, the equality occurs 
precisely when F is a radial segment (traversed twice). 

A compact, convex set in the plane is a translation cover for a family of plane 
arcs if for each arc in the family there is a translation that carries the arc into the 
set. We can use Lemma 2 to characterize sectorial translation covers for the family 
&L of all closed curves of length L. 

THEOREM 3. A sector S(r, 6) is a translation cover for c€L if and only if r > (L/2) 
Csc (9. 
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Proof. Suppose that S(r, 6)= (BAC) is a sectors atisfying r>(L/2) Csc 6, and 
suppose that T is a given closed curve of length L. By a translation we can suppose 
that r lies in L BAC and touches each of the rays AB and AC. Let r0 be the maximum 
distance from the vertex A to any point on the (translated) curve. Then the sector 
with vertex A and radius r0 is circumscribed about the curve, and according to 
Lemma 2, r0<(L/2) Csc 6<r. It follows that the (translated) curve lies in S(r, 6). 
Conversely, it is plain that no sector with angle 6 and smaller radius can be a 
translation cover for all closed curves of length L, because the width r sin 6 of any 
covering sector S(r, 6) in the direction perpendicular to a boundary ray must be at 
least L/2. 

COROLLARY 4. The circular sector of least area that is a translation cover for 
%7

L has angle 60 and radius (L/2) csc 0O, where 60& 1.16556 is the least positive root 
of the equation tan 6=26. The area of this sector is approximately 0.1725L2. 

Proof. For each 6, the smallest sector S(r, 6) that is a translation cover for 
<gL has radius r=(L/2)Csc0 and area f(6)=\L26 Csc2 6. This function has a 
unique minimum on the interval (0, IT] at the least positive root 6Q of the equation 
tan 6=26. 

3. A compact, convex (plane) set is a displacement cover for a family of (plane) 
arcs if for each arc in the family there is a displacement (i.e., a map of the plane 
that can be factored as a product of a translation and a rotation) that carries the arc 
into the set. By combining Lemma 2 with a reflection of J. Ralph Alexander's, we 
obtain a result on sectorial displacement covers for the family s/L of arbitrary arcs 
of length L that generalizes Meir's semidisk result. 

THEOREM 5. 7/>>(L/2) csc 6, then the circular sector S(r, 26) is a displacement 
cover for seL; and conversely when 6>7rf6. 

Proof. Suppose that r > (L/2) csc 6, and let F be an arc of length L. The assertion 
follows from Theorem 3 if V is closed, so suppose that V has distinct endpoints P 
and Q. Let m be the perpendicular bisector of the segment PQ, and let V be the 
closed curve of length L that results from reflecting the points of V lying on one 
side of m through m (Figure 2). Let / be a support line of V that makes an angle 
6 with m. Then the circular sector with radius r, sides on / and m, and center at 
the point A in which / and m intersect surrounds Y ; and it is evident that the 
sector (BAC) with radius r and vertex angle 26 covers V. Every displacement cover 
must have diameter at least L, so when 6>TTJ6 no smaller sector is a cover. 

Whether a sector S(r, 26) with radius smaller than (L/2) csc 6 can accommodate 
each arc of length L when 6<TT\6 is not known. 
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COROLLARY 6. There is a circular sector with area less than 0.3451L2 that is a 
displacement cover for seL. 

Proof. For each 6 in (0,7r/2], the sector S(r, 26) with radius r=(L/2) esc 6 is a 
displacement cover for seL and has area/(#)=JL 20 csc2 6. This function has a 
unique minimum value/(0O)^O.345O1L2 at the least positive root 6Q ^1.16556 of 
the equation tan 6=26. 

4. Problems of finding sets of certain kinds that can accommodate in a specified 
way each arc from a specified family are called "worm" problems, and a great 
variety of such problems, mostly unsolved, can be found in the literature. (For 
examples and further references, see [4] and the lists of research problems compiled 
by Croft [2], [3] and Moser [6].) 

The smallest triangular translation cover for the family &L of all closed curves of 
length L is the equilateral triangle of side 2L/3 (see [9]). The smallest sectorial 
translation cover, determined in Corollary 4, is a little smaller than this smallest 
triangle. 

But we can do a bit better. Once a given closed curve has been translated into a 
covering sector, a further translation will produce a point of contact with the 
circular boundary arc without taking the curve outside the sector. Then the curve 
surely cannot enter the small sector (DAE) having the same vertex and boundary 
rays and radius (L/2)(Csc 6—1), or its length would be greater than L (Figure 3). 
It follows that the truncated sector obtained by clipping the small isosceles triangle 
ADAE with AD=AE=(L\f2)(Csc 6-1) from a covering sector S((L/2) Csc 6, 6) is 

https://doi.org/10.4153/CMB-1973-058-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-058-8


1973] SECTORIAL COVERS FOR CURVES OF CONSTANT LENGTH 371 

Figure 3 

again a translation cover. This truncated sector has area 

/(0) = - [6 Csc2 6 - sin 6 (Csc 0-1)2] , 

and minimizing this function on (0, TT] shows that there is such a truncated sector 
having area less than 0.15900L2; the minimum truncated sector has angle equal to 
the least positive root 0X ^1.12120 of the equation 

tan 6 = 20 - sin d cos2 6. 

This minimal truncated sector is the one pictured in Figure 3. 
In 1921, Pal [7] proved that every convex set having minimal width t has area 

at least t2jyj3 (see also [10, pp. 60, 221-222]). It follows that every translation 
cover for &L has area at least L2/(4x/3) ^0.144L2, because every such set obviously 
has minimal width t>L\2. By modifying Pal's argument, we can strengthen this 
lower bound to approximately 0.15544L2. 

For the following discussion, let The a translation cover for 9SL. We say that a 
triangle AABCis embedded in T if A, B, and C lie on the boundary of Tand if there 
are support lines atA,B, and C that form a triangle enclosing T. 

LEMMA 7. IfAABC is embedded in Tand ifB' and C" are points of T across the line 
BC from A so that the segments B'C and BC are parallel, then B'C'<BC. 

Proof. If B'C> BC, then (by the parallel postulate) every support line at B meets 
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each (non-parallel) support line at C on the same side of the line BC as A, contrary 
to the assumption that there be support lines at A, B, and C that surround T. 

LEMMA 8. Every triangle embedded in T has perimeter at least L. 

Proof. Suppose AABC, with perimeter p, is embedded in T. By hypothesis 
there are points A', B', and C in T so that AA'B'C is (positively) homothetic to 
AABC and has perimeter p' = L. If AA'B'C is a translate of AABC, thenp=p'=L. 
Otherwise, let X be the center of the homothety. 

We show first that X cannot lie in one of the (open) angular regions formed by 
the sides of AABC off the vertices. Suppose X lies in such a region, say in the 
interior of /^ DAE (Figure 4a). Since this set is disjoint from T (otherwise A would 

(a) (b) 
Figure 4 

be an interior point of T), A must lie on the segment A'X. Suppose A'^A. Then 
since the segments B'C and BC are parallel and AABC is embedded in T, B'C'< 
BC, an obvious contradiction. 

Consequently X lies in one of the closed angular regions bounded by an angle 
of AABC, say in the closed region bounded by ABAC (Figure 4b). Then A' lies on 
the segment AX, and it follows at once t h a t p > p = L . 

It was proved by Blaschke [1, pp. 370-371] that if S is an incircle of a compact, 
convex set Twith boundary dT, then either S n d T contains two points that are 
the ends of a diameter of S, or S n dT contains three points that are the vertices 
of an acute triangle (see also [10, pp. 59, 215-216]). 

COROLLARY 9. The inradius of T is at least L^/3/9. 

Proof. Let r be the inradius of T, and let S be an incircle. If S n dT contains 
two points P and Q that are the ends of a diameter of S, then P g = 2 r > L / 2 , and so 
r>L/4>L x /3 /9 . If on the other hand S n dT contains three points A, B, and C 
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that form an acute triangle, then AABC is embedded in T (because the unique 
support lines to Tat A, B, and C are perpendicular to the radii of S to these points, 
and the center of S lies inside AABC); and it follows from the lemma and Jensen's 
inequality [5, pp. 23-25, 28] that 

_ _ a b c__ 

2 sin a 2 sin /? 2 sin y 

= P 
2(sin oc + sin /? + sin y) 

2(sin a + sin /? + sin y) 

L L J 3 
> = -7 L -> 

. . 77 9 

6 sin — 
3 

proving the assertion. 
For the sake of completeness, we include a sketch of the relevant portions of Pal's 

argument (from [7, pp. 313-314]). For each r in [L/6, L/4], let Or be the convex 
hull of a circle of radius r and three points X, Y, and Z at distance (L/2)—r from 
the center of the circle, arranged so that the "caps" that are added to the circle do 
not overlap (see Figure 5). The area/(r) of a figure Or is given by 

(1) f(r) = 7 r r 2 + - (L2-4rL)1 / 2-3r2 arccos -^— ; 

and since/ ' ( r)>0 for L/6<r<L/4, the area/ ( r ) is an increasing function of r. 
We claim that T contains a figure Or for some r>L^J3\9 and that consequently the 
area of Tis at least/(L^/3/9). 

Let r be the inradius of T, and let S be an incircle with center 0. If S n 9 r con­
tains two points that are the ends of a diameter of S, then r>Lj4 (as observed 
before), and the circle Ojr/4 is a subset of 7\ Otherwise S n 3 7 contains three 
points ^4, 5 , and C that form an acute triangle. The support lines lA, lB, and lc to 
r at A, B, and C are tangent to S. Let D, E, and F be points on dT at which the 
support lines lD, lE, and lF are parallel to /^, /#, and / c respectively (Figure 5). 

The distance between lA and lD is at least L/2, so AD>LI2; and DO>(L/2)—r 
since AO=r. Let X be the point on the segment 02) so that OAr=(L/2)—r. The 
tangent lines from X to S form a cap that lies entirely in T and on the opposite 
side of the line BC from A. 

Similarly we find points Y on the segment OE and Z on the segment OF; and the 
circle S and points X, 7, and Z determine a figure Or ç T, where r is the inradius 
of T. It follows that the area of T must be at least the area/(r) of <I>r, which, since 

f(r) is increasing, must be at least/(L^/3/9). In summary, we have the following 
theorem. 
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Figure 5 

THEOREM 10. Every translation cover for the family of closed curves of length L 
has area at least f (£^3/9)^0.15544L2, where f(r) is given by (1); and there exists a 
translation cover for this family having area less than 0.15900L2. 

The circle O i / 4 is the only figure O r that is a translation cover for ^L, because the 
minimal width of each O r for r<Lj4 is less than L\2. 

5. By truncating a sectorial displacement cover, we can produce a smaller dis­
placement cover for the family stfL of all arcs of length L. Indeed, the region 
produced by clipping the small isosceles triangle with vertex angle 26 and sides of 
length (L/2)(csc 0 —1) from the vertex of a covering sector S((L/2)csc 6, 26) is 
again a displacement cover for séL, as can easily be seen by applying the reflection 
argument employed in the proof of Theorem 5. Its area, 

/(0) = - [26 esc2 6 - sin 26 (esc 0-1)2] , 
8 

has a unique minimum value/(#2) ^0.34423L2 at the leastpositive root 62 ̂  1.14687 
of the equation 

tan 6 = 26 - tan 6 (cos2 6-2 sin3 6+2 sin4 6). 

The best lower bound we know for the area of such covers is 0.21946L2, which 
arises as follows. Schaer [8] showed that the arc of length 1 that has maximum 
thickness, i.e., whose minimum width is as large as possible, has thickness b0 & 
0.43893. Every displacement cover for stfL must have diameter d at least L and 
width w in the direction perpendicular to a diameter at least bQL. Consequently its 
area must be at least HY//2>6 0L 2 /2 ^0.21946ZA In summary, we have the following 
theorem. 
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THEOREM 11. Every displacement cover for the family of all arcs of length L has 

area at least 0.21946L2; and there exists a displacement cover for this family with 

area less than 0.34423L2. 
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