B3.4 Algebraic Number Theory
Sheet 2 — HT24

Section A

1. Suppose that « is an algebraic integer of degree n, with monic minimal polynomial
me € Z]X]. Let K = Q(«). Show that

discijq(l,a, ..., = (=1)"" V2N g (m), (o),

where m/, denotes the derivative. Using this, compute discx/q(1, o, @), where K =
Q(a) with a = 21/3,

Solution: We have already observed in the course that

discxjq(l,a, ..., a" ") = [[(oi(a) — o(a))?, (1)

i<j

where the o; : K — C are the embeddings of K. On the other hand,

ma(X) = [[(X = 0i(a)),

i
and so
=2 IIx —aila
Joi#d
In particular,

my(o;(a)) = [[(05(e) = 0i(a)),

i#]

Nk/q(m Hm oj(a HH oj(a) — oi(@)). (2)

J oA
This is clearly equal to the expression in (1) up to a sign, and a moment’s thought shows
that the sign is indeed (—1)"~1/2: to go from (2) to (1), one needs to switch the sign
of the n(n — 1)/2 pairs with ¢ > j.

and so

In the example (which, one should remark, also appeared on the first sheet), n = 3 and
ma(X) = X*—2, hence m),(a) = 3a?. Thus N q(m)(a)) = 33 Ng/q(a)? = 3°2% Thus

we obtain discx/q(1, o, @) = —108, which agrees with the answer on Sheet 1.
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Section B

The first five questions of Section B are related and discuss the cyclotomic field K =
Q(¢p), where (, := €>™/P and p is an odd prime.

2. Show that the degree [K : Q] is p — 1.

Solution: X? — 1 is not irreducible, since it factors as (X — 1)f(X), where f(X) :=
XP~1 4+ XP=2 4 ... 4 1. This is irreducible by Eisenstein’s criterion. Indeed,

P _ p—1
fIX+1) = % > a X",

n=0

with a, = (nil), and so pta,_1, whilst p | ai,...,a,_2, but p? t ao.

3. Evaluate Ng,q(1 — ().

Solution: We have the factorisation
p—1
i=1

since all the ¢* are roots of X?—1 = 0 (but not of X —1 = 0) and they are distinct. Since
f is irreducible, the conjugates of ¢ are precisely these numbers (* fori =1,...,p — 1.
Therefore

p—1

Nkl —¢) =[]0 -¢) = f1) =p.

=1

4. Show that }D(C — 1)P~! is an algebraic integer.

Solution: We have the binomial expansion

1= = - nr = - (D)@ (7 Y-

1 p—1
Therefore

=SB (e

and the right-hand side is an integer since all the binomial coefficients are divisible by

p-
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5. Evaluate discg/q(1,¢, ..., ¢?7?). (Hint: you may want to use Question 1 and the answer
to Question 3.)

Solution: The answer is (—1)P~1/2pP=2 We apply Question 1. Note that f = m is

the minimal polynomial of ¢, thus it suffices to show (since p is odd) that

Nis(f'(€) =" (3)

Here, we noted that (—1)P=D®=2/2 the quantity which features in Question 1, is equal

to (—1)®=Y/2 since p is odd. By the quotient rule for derivatives,

(X = )pX7! = (X7 1)

Evaluating at X = (, we obtain
/ _ —pCp_l
0=

Now we have
Nijq(=p) = (=p)',
Ni/q(¢) =1
and, by Question 3,
Nkl =¢) =p.

The claim (3) follows immediately.

6. (i) Suppose that co,cy,...,cp—o are integers and that
1
2—9(00 + Cl(C — 1) + -+ Cp_g(g — 1)p_2) € OK.

Show that all the ¢; are divisible by p. (Hint: suppose not, and let r be minimal
such that ptc,. You may wish to recall Questions 3 and 4.)

(i) Show that 1,(,...,¢P"% is an integral basis for Of.

Solution: (i) Suppose not, and that r is minimal such that p 1 ¢,. Subtracting off

elements of Z[¢ — 1], we have
1 _
= 1—?(@(5 1)+t =17 € Ok. (4)
Now use the result of Question 4, that is to say

%(g — 1) € O.
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Thus, multiplying (4) through by (¢ — 1)P727", we see that
1 -2
507«(4_ — 1)12 S OK

However by Question 3 the norm of the left-hand side is ¢! /p. This is not an integer,

and so we get a contradiction.

(ii) A slick way to proceed here is notice that m¢_1(X) = m¢(X+1), and somg_,(¢(—1) =
m(C), and so by Questions 1 and 5,

discx/q(1, (¢ —1),(¢ —1)%...,(¢C — 1)P7?) = discx/q(1,¢, ..., (P77
= (-1 (5)

Since p is the only prime dividing this discriminant, a result from lectures shows that
any element of O is of the form %(CT(C —1)"+---+¢, 1(¢C—1)P71), and hence by part
(i) of the question lies in Z[{ — 1], which is contained in Z[(].

An alternative way to proceed (the one I originally had in mind) is to note that

Z[¢ — 1] = Z[¢]. (6)

This is true because, for any algebraic integer ¢, Z[t & 1] C Z[t], by binomial expansion
of each power (t41)". Applying this with ¢ = ( —1 and the + sign gives Z[(] C Z[¢ —1],
and applying it with ¢ = ¢ and the — sign gives the opposite inclusion Z[¢ — 1] C ZI[(].

Now, by lectures and Question 5, any element x € O lies in %Z[C], and hence by (6)
lies in %Z[C — 1]. By part (i) of the question, z therefore lies in Z[( — 1], and so finally
by (6) again, we have x € Z[(].

7. Let K be a number field. We say that K is norm-Fuclidean if O is a Euclidean domain
with respect to the norm function: that is, given a,b € O \ {0} we may find ¢,r € Ok
such that a = gb +r with |Ng/q(r)| < |Nk/q(b)|.

(i) Show that a norm Euclidean domain is a principal ideal domain.

(ii) Let K = Q(+v/—7). Show that K is norm-Euclidean.

Solution: (i) A norm Euclidean domain is clearly a Euclidean domain, so this ought
to be just revision from rings and modules. Let’s recall the argument: let a be an ideal,
and let a € a\ {0} have |[Ng/q(a)| minimal. Let 8 € a. We have § = ga + r with
¢,7 € O and |Ng/q(r)] < |Nk/q(B)|. Clearly r € a. By minimality, » = 0, and
therefore 5 € ().
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(ii) Let z = § € K. We need only show that there is ¢ € O such that | Ng,q(z—q)| < 1.

Set 6 := HTﬁ, so by results of the course Ox = Z[f] (since —7 = 1(mod4)). Write

xr = u + Ov; we look for ¢ = m + 6n, with m,n € Z. We may compute
v—n

NK/Q(:L’—q):(u—l—%v—m—%n)z—kﬂ 5 )2 (7)

There is some value of n such that [v —n| < 3, so the second term is < %. Then, there
is some value of m such that |u 4+ v —m — 3n| < 3, so the first term in (7) is at most

1 . 1, 7
i The result follows since 1t 16 < 1.

8. Let K = Q(y/—p), where p is a prime congruent to 1(mod4). By considering factorisa-

tions of 2, or otherwise, show that O is not a principal ideal domain.

Solution: Since —p = 3(mod 4), Ok = Z[\/—p|. Now observe that
(2) = (2,1++v-p)*
Indeed,
(2,1 ++v=p)?=(4,2+2v/=p, 1 —p+2v/—p)
= (4,2 + 2y/—p,2y/—p) since p = 1(mod 4)
= (2).

(Or, if you like,

2= 21+ v7p) - (1+ v7p)* - (C )2

But (2,1 + \/—p) cannot be principal, as Ok has no element of norm 2.
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Section C

9. Let K = Q(+/—7). In this question you may assume (as follows from Question 7) that
Ok is a PID.

(i) Factor 2 and 1/—7 into irreducibles in Ok.
(ii) Suppose that 7t z. Show that 2z ++/—7 and 2x — /—7 are coprime.

(iii) Show that there are no integer solutions to the equation 4% + 7 = 33.

Solution: (i) We have Ng/q(v/—7) = 7 so v/—T is itself irreducible. However, 2 = 60
where § = (1 ++/=7) (which is in Ok). These both have norm 2, so are irreducible.

Since the only units in Ok are +1, they are not associates.

(ii) Suppose d divides both these expressions. Then d divides 2v/—7 = 00v/—7. If /=7
divides both expressions then 7 divides 4z + 7, hence 7|z, contrary to assumption.
Suppose that 0|2z + /=7, 22z — v/—7. Then, taking conjugates, 0|2z ++/—7, 2z — /7,
and so 2 = 00 divides both 2z + /=7 and 2z 4+ /—7. This is impossible, since z + %\/?

is not an algebraic integer.

(iii) Such a solution cannot have 7|z, since otherwise 7%|y®—4z% = 7. Factor the equation
as (2r ++/=T7)(2z — /=T7) = 3. By the first part, the two factors are coprime. Thus

they are both cubes, in particular
21 +/—7 = (a + bd)®

with a,b € Z. (Note again that the only units are +1, which are both cubes). Expanding

out and comparing coefficients gives

(a+ g)g - %(a + g)b2 = 2z, (8)
3(a + 2)22 - 7(%)3 =1 (9)

The second of these factors as
b(3(2a + b)* — %) = 8,
thus b = £1,£2, +4, +8. One may check that none of these leads to an integral value

of a.

Remark. Solving 2% + 7 = 32 for x odd is actually quite tricky and well beyond the
scope of this course. It was done by Ljunggren in the 1940s (z = +1 and = = +181 are

the only solutions).
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