
B3.4 Algebraic Number Theory

Sheet 2 — HT24

Section A

1. Suppose that α is an algebraic integer of degree n, with monic minimal polynomial

mα ∈ Z[X]. Let K = Q(α). Show that

discK/Q(1, α, . . . , α
n−1) = (−1)n(n−1)/2NK/Q(m

′
α(α)),

where m′
α denotes the derivative. Using this, compute discK/Q(1, α, α

2), where K =

Q(α) with α = 21/3.

Solution: We have already observed in the course that

discK/Q(1, α, . . . , α
n−1) =

∏
i<j

(σi(α)− σj(α))
2, (1)

where the σi : K → C are the embeddings of K. On the other hand,

mα(X) =
∏
i

(X − σi(α)),

and so

m′
α(X) =

∑
j

∏
i ̸=j

(X − σi(α)).

In particular,

m′
α(σj(α)) =

∏
i ̸=j

(σj(α)− σi(α)),

and so

NK/Q(m
′
α(α)) =

∏
j

m′
α(σj(α)) =

∏
j

∏
i ̸=j

(σj(α)− σi(α)). (2)

This is clearly equal to the expression in (1) up to a sign, and a moment’s thought shows

that the sign is indeed (−1)n(n−1)/2: to go from (2) to (1), one needs to switch the sign

of the n(n− 1)/2 pairs with i > j.

In the example (which, one should remark, also appeared on the first sheet), n = 3 and

mα(X) = X3−2, hence m′
α(α) = 3α2. Thus NK/Q(m

′
α(α)) = 33NK/Q(α)

2 = 3322. Thus

we obtain discK/Q(1, α, α
2) = −108, which agrees with the answer on Sheet 1.
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Section B

The first five questions of Section B are related and discuss the cyclotomic field K =

Q(ζp), where ζp := e2πi/p and p is an odd prime.

2. Show that the degree [K : Q] is p− 1.

Solution: Xp − 1 is not irreducible, since it factors as (X − 1)f(X), where f(X) :=

Xp−1 +Xp−2 + · · ·+ 1. This is irreducible by Eisenstein’s criterion. Indeed,

f(X + 1) =
(X + 1)p − 1

X
=

p−1∑
n=0

anX
n,

with an :=
(

p
n+1

)
, and so p ∤ ap−1, whilst p | a1, . . . , ap−2, but p

2 ∤ a0.

3. Evaluate NK/Q(1− ζ).

Solution: We have the factorisation

f(X) =

p−1∏
i=1

(X − ζ i),

since all the ζ i are roots of Xp−1 = 0 (but not of X−1 = 0) and they are distinct. Since

f is irreducible, the conjugates of ζ are precisely these numbers ζ i for i = 1, . . . , p− 1.

Therefore

NK/Q(1− ζ) =

p−1∏
i=1

(1− ζ i) = f(1) = p.

4. Show that 1
p
(ζ − 1)p−1 is an algebraic integer.

Solution: We have the binomial expansion

1 = 1p = (1 + (ζ − 1))p = (ζ − 1)p +

(
p

1

)
(ζ − 1)p−1 + · · ·+

(
p

p− 1

)
(ζ − 1) + 1.

Therefore
1

p
(ζ − 1)p−1 = −1

p

p−1∑
i=0

(
p

i

)
(ζ − 1)p−i−1,

and the right-hand side is an integer since all the binomial coefficients are divisible by

p.
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5. Evaluate discK/Q(1, ζ, . . . , ζ
p−2). (Hint: you may want to use Question 1 and the answer

to Question 3.)

Solution: The answer is (−1)(p−1)/2pp−2. We apply Question 1. Note that f = mζ is

the minimal polynomial of ζ, thus it suffices to show (since p is odd) that

NK/Q(f
′(ζ)) = pp−2. (3)

Here, we noted that (−1)(p−1)(p−2)/2, the quantity which features in Question 1, is equal

to (−1)(p−1)/2, since p is odd. By the quotient rule for derivatives,

f(X) =
(X − 1)pXp−1 − (Xp − 1)

(X − 1)2
.

Evaluating at X = ζ, we obtain

f ′(ζ) =
−pζp−1

1− ζ
.

Now we have

NK/Q(−p) = (−p)p−1,

NK/Q(ζ) = 1

and, by Question 3,

NK/Q(1− ζ) = p.

The claim (3) follows immediately.

6. (i) Suppose that c0, c1, . . . , cp−2 are integers and that

1

p
(c0 + c1(ζ − 1) + · · ·+ cp−2(ζ − 1)p−2) ∈ OK .

Show that all the ci are divisible by p. (Hint: suppose not, and let r be minimal

such that p ∤ cr. You may wish to recall Questions 3 and 4.)

(ii) Show that 1, ζ, . . . , ζp−2 is an integral basis for OK .

Solution: (i) Suppose not, and that r is minimal such that p ∤ cr. Subtracting off

elements of Z[ζ − 1], we have

α :=
1

p
(cr(ζ − 1)r + · · ·+ cp−1(ζ − 1)p−1) ∈ OK . (4)

Now use the result of Question 4, that is to say

1

p
(ζ − 1)p−1 ∈ OK .
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Thus, multiplying (4) through by (ζ − 1)p−2−r, we see that

1

p
cr(ζ − 1)p−2 ∈ OK .

However by Question 3 the norm of the left-hand side is cp−1
r /p. This is not an integer,

and so we get a contradiction.

(ii) A slick way to proceed here is notice thatmζ−1(X) = mζ(X+1), and som′
ζ−1(ζ−1) =

m′
ζ(ζ), and so by Questions 1 and 5,

discK/Q(1, (ζ − 1), (ζ − 1)2, . . . , (ζ − 1)p−2) = discK/Q(1, ζ, . . . , ζ
p−2)

= (−1)(p−1)/2pp−2. (5)

Since p is the only prime dividing this discriminant, a result from lectures shows that

any element of OK is of the form 1
p
(cr(ζ − 1)r + · · ·+ cp−1(ζ − 1)p−1), and hence by part

(i) of the question lies in Z[ζ − 1], which is contained in Z[ζ].

An alternative way to proceed (the one I originally had in mind) is to note that

Z[ζ − 1] = Z[ζ]. (6)

This is true because, for any algebraic integer t, Z[t± 1] ⊆ Z[t], by binomial expansion

of each power (t±1)i. Applying this with t = ζ−1 and the + sign gives Z[ζ] ⊆ Z[ζ−1],

and applying it with t = ζ and the − sign gives the opposite inclusion Z[ζ − 1] ⊆ Z[ζ].

Now, by lectures and Question 5, any element x ∈ OK lies in 1
p
Z[ζ], and hence by (6)

lies in 1
p
Z[ζ − 1]. By part (i) of the question, x therefore lies in Z[ζ − 1], and so finally

by (6) again, we have x ∈ Z[ζ].

7. Let K be a number field. We say that K is norm-Euclidean if OK is a Euclidean domain

with respect to the norm function: that is, given a, b ∈ OK \ {0} we may find q, r ∈ OK

such that a = qb+ r with |NK/Q(r)| < |NK/Q(b)|.

(i) Show that a norm Euclidean domain is a principal ideal domain.

(ii) Let K = Q(
√
−7). Show that K is norm-Euclidean.

Solution: (i) A norm Euclidean domain is clearly a Euclidean domain, so this ought

to be just revision from rings and modules. Let’s recall the argument: let a be an ideal,

and let α ∈ a \ {0} have |NK/Q(α)| minimal. Let β ∈ a. We have β = qα + r with

q, r ∈ OK and |NK/Q(r)| < |NK/Q(β)|. Clearly r ∈ a. By minimality, r = 0, and

therefore β ∈ (α).
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(ii) Let x = a
b
∈ K. We need only show that there is q ∈ OK such that |NK/Q(x−q)| < 1.

Set θ := 1+
√
−7

2
, so by results of the course OK = Z[θ] (since −7 ≡ 1(mod 4)). Write

x = u+ θv; we look for q = m+ θn, with m,n ∈ Z. We may compute

NK/Q(x− q) = (u+
1

2
v −m− 1

2
n)2 + 7(

v − n

2
)2. (7)

There is some value of n such that |v− n| ⩽ 1
2
, so the second term is ⩽ 7

16
. Then, there

is some value of m such that |u+ 1
2
v −m− 1

2
n| ⩽ 1

2
, so the first term in (7) is at most

1
4
. The result follows since 1

4
+ 7

16
< 1.

8. Let K = Q(
√
−p), where p is a prime congruent to 1(mod 4). By considering factorisa-

tions of 2, or otherwise, show that OK is not a principal ideal domain.

Solution: Since −p ≡ 3(mod 4), OK = Z[
√
−p]. Now observe that

(2) = (2, 1 +
√
−p)2.

Indeed,

(2, 1 +
√
−p)2 = (4, 2 + 2

√
−p, 1− p+ 2

√
−p)

= (4, 2 + 2
√
−p, 2

√
−p) since p ≡ 1(mod 4)

= (2).

(Or, if you like,

2 = 2(1 +
√
−p)− (1 +

√
−p)2 − (

p− 1

4
)22)

But (2, 1 +
√
−p) cannot be principal, as OK has no element of norm 2.
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Section C

9. Let K = Q(
√
−7). In this question you may assume (as follows from Question 7) that

OK is a PID.

(i) Factor 2 and
√
−7 into irreducibles in OK .

(ii) Suppose that 7 ∤ x. Show that 2x+
√
−7 and 2x−

√
−7 are coprime.

(iii) Show that there are no integer solutions to the equation 4x2 + 7 = y3.

Solution: (i) We have NK/Q(
√
−7) = 7 so

√
−7 is itself irreducible. However, 2 = θθ

where θ = 1
2
(1 +

√
−7) (which is in OK). These both have norm 2, so are irreducible.

Since the only units in OK are ±1, they are not associates.

(ii) Suppose d divides both these expressions. Then d divides 2
√
−7 = θθ

√
−7. If

√
−7

divides both expressions then 7 divides 4x2 + 7, hence 7|x, contrary to assumption.

Suppose that θ|2x+
√
−7, 2x−

√
−7. Then, taking conjugates, θ|2x+

√
−7, 2x−

√
−7,

and so 2 = θθ divides both 2x+
√
−7 and 2x+

√
−7. This is impossible, since x+ 1

2

√
7

is not an algebraic integer.

(iii) Such a solution cannot have 7|x, since otherwise 72|y3−4x2 = 7. Factor the equation

as (2x +
√
−7)(2x −

√
−7) = y3. By the first part, the two factors are coprime. Thus

they are both cubes, in particular

2x+
√
−7 = (a+ bθ)3

with a, b ∈ Z. (Note again that the only units are ±1, which are both cubes). Expanding

out and comparing coefficients gives

(a+
b

2
)3 − 21

4
(a+

b

2
)b2 = 2x, (8)

3(a+
b

2
)2
b

2
− 7(

b

2
)3 = 1. (9)

The second of these factors as

b(3(2a+ b)2 − 7b2) = 8,

thus b = ±1,±2,±4,±8. One may check that none of these leads to an integral value

of a.

Remark. Solving x2 + 7 = y3 for x odd is actually quite tricky and well beyond the

scope of this course. It was done by Ljunggren in the 1940s (x = ±1 and x = ±181 are

the only solutions).
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