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Abstract
The problem of finding the eigenvalues of a tri-diagonal Toeplitz

matrix is of fundamental importance in several aspects of mathematics
and engineering. An example is found in the solution of finite differ-
ence problems for the heat equation. The problem of solving for the
eigenvalues of a tri-diagonal Toeplitz matrix is set up as a difference
equation. Once the difference equation is in place there are at least
three roads to its solution. One road is using Chebyshev polynomi-
als and their roots, another is using the Z transform, and the other
is using a more traditional method to solve difference equations with
initial conditions. The last two roads are presented here while the first
is just indicated in a footnote.

1 Introduction

We want to find the eigenvalues and eigenvectors of the following tri-diagonal
Toeplitz matrix: 

a b
c a b

c a b
. . .
c a b

c a

 ,
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We start using a methodology based on the Z transform for some simpler ma-
trices that lead us to the solution of the matrix above. In a second approach
we solve a difference equation by setting up some solutions to a difference
equations which satisfy some initial conditions.

2 An approach through the Z transform

2.1 A simple Toeplitz matrix

We start by finding the eigenvalues of the matrix

U =


0 1
1 0 1

1 0 1
. . .

1 0 1
1 0

 .

The eigenvalues satisfy the characteristic equation

det(U − λI) = 0.

That is:

pn(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1
1 −λ 1

1 −λ 1
. . .

1 −λ 1
1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

While p0 is not defined, we can define p0 = 1, also for one dimension p1 = −λ.
For n dimensions n ≥ 2 we expand the determinant along the first raw.

pn(λ) = −λ pn−1 − pn−2.

In this equation the first sample is taken at n = 2. To set up the problem
using the typical definition of the unilateral Z transform, we want to have
the first sample at n = 0. This is easily stablish by rewriting equation 1 as
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pn+2(λ) = −λ pn+1 − pn.

n = 0, 1 · · · . We want to solve the difference equation

pn+2(λ) + λ pn+1 + pn = 0

subject to the initial conditions:

p0 = 1 , p1 = −λ.

We take the unilateral Z transform 1 of equation 1 and obtain:

z2P (z)− z2 p0 − z p+ zλP (z)− zλp0 + P (z) = 0.

That is

P (z)(z2 + λz + 1) = z(p1 + λp0) + z2p0 = z2

and

P (z) =
z2

z2 + λz + 1
.

We can find the inverse Z transform using partial fraction expansion. Let us
first, find the roots of the quadratic equation in the denominator. We have

z1 = −λ
2

+

√
λ2 − 4

2
, z2 = −λ

2
−
√
λ2 − 4

2

We use the Gersgorin’s Theorem to find, the bounds of the eigenvalues. Each
eigenvalue is bound in absolute value by the sum of some raw of the matrix

1Instead of using the Z transform methods, or any more general difference equation
methods, the reader can view the problem in a different way. By mapping −λ = 2x we
can rewrite the recursion 1 as

pn+2(x) = 2xpn+1(x)− pn(x).

This is can be recognized as the Chebyshev polynomials of the second kind. A lot is known
about them, including analytical closed from of their roots.
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it came from, non–counting the diagonal element. In this particular case all
eigenvalues are bounded by 2. That is

|λ| ≤ 2

Therefore we can define

cos θ = −λ
2

(1)

and,

√
λ2 − 4

2
= i

√
1−

(
λ

2

)2

= i
√

1− cos2 θ = i sin θ

with i =
√
−1.

So we can rewrite

z1 = eiθ , z2 = e−iθ.

The partial fraction representation of 1 is:

z2

z2 + λz + 1
= z2

(
A

z − z1
+

B

z − z2

)
where

A =
1

z1 − z2
=

1

2 i sin θ
, B =

1

z2 − z1
= − 1

2 i sin θ
.

Then

P (z) =
z2

z2 + λz + 1
=

z2

2i sin θ

(
1

z − z1
− 1

z − z2

)
or

P (z) =
z

2i sin θ

(
1

1− z1/z
− 1

1− z2/z

)
.

We expand the geometric series (inverse Z transform) to obtain:

P (z) =
z

2i sin θ
[(1 + z1z

−1 + z21z
−2 + · · ·+ zn1 z

−n · · · )

− (1 + z2z
−1 + z22z

−2 + · · ·+ zn2 z
−n + · · · )]

=
1

2i sin θ
[(z1 − z2) + (z21 − z22)z−1 + · · ·+ (zn1 − zn2 )z−n + · · · ]

=
1

sin θ
[sin θ + sin 2θz−1 + · · ·+ sin(n+ 1)θz−n + · · · ]
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and, from the inverse Z transform

pn(θ) =
sin(n+ 1)θ

sin θ

Here we find yet another representation of the Chebyshev polynomials of
second kind, by mapping x = cos θ = −λ/2.

For the trivial (non–important) case of n = 0, p0(θ) = p0(λ) = 1. The
solution of pn(θ) = 0, n > 0, in terms of θk is given by

(n+ 1)θk = kπ

that is

θk =
kπ

n+ 1

We now use equation 1 and find

cos θk = cos
kπ

n+ 1
= −λk

2

that is

λk = −2 cos
kπ

n+ 1

k = 1, 2, · · · , n. If n is odd, then the root λ(n+1)/2 = 0, otherwise all roots
are different from zero. Let us call A = {k/(n+ 1) | k = 1, 2, · · · , n}. For
n odd

A =

{
1

n+ 1
, · · · n+ 1

2(n+ 1)
=

1

2
,
n+ 3

2(n+ 1)
, · · · n+ 2j − 1

2(n+ 1)
, · · · , n

n+ 1

}
Now since cos θ = − cos(π− θ) we want to map the second half of this set to
the first half and simplify the set of roots.

Start with the set (n + 2j − 1)/2(n + 1), j = 1, 2, · · · (n + 1)/2, and fold
it with respect to 1 as 1− (n+ 2j − 1)/2(n+ 1) which is

1− n+ 2j − 1

2(n+ 1)
=
n+ 3− 2j

2(n+ 1)

j = 1, 2, · · · , (n+ 1)/2. This half set of coefficients is

B =

{
1

n+ 1
, · · · , n+ 1

2(n+ 1)
=

1

2

}
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n = 3 n = 4

Figure 1: Illustration of the roots for the characteristic equation (eigenvalues
of U) for n = 3 and n = 4. The black points on the circumferences represent
the coordinates (2 cos kπ/(n+1), 2 sin kπ/(n+1)) and the projections on the
x axis (green points) are the eigenvalues 2 cos kπ/(n+ 1).

with j = (n+1)/2, (n−1)/2, · · · , 1. We recognize that these angle coefficients
are exactly those in the first half of the set A. Therefore the roots are
complete characterized by the first half of angle coefficients in the set A,
but for coefficients in the second half, the sign of the root should be flipped
(again, because cos θ = − cos(π−θ).) If n is even, the same argument applies
but the zero root is not present.

This argument seems to be elaborated and could be explained in a dif-
ferent way. The Chebyshev polynomials with n even are even functions, and
so the roots are symmetrically distributed with respect to the origin. For
those polynomials 0 is not a root. The Chebyshev polynomials with n odd,
are odd functions and so the roots are also symmetrically distributed with
respect to the origin. For those odd polynomials 0 is of course a root (since
pn(x) = −pn(−x), that is 2 pn(0) = 0.

Geometrically, the roots of the characteristic function are projections from
a circle with radius 2, into the x–axis, where the points along the circles have
simple angle description given by the kπ/(n+ 1) expression.

Figure 1 illustrate the distribution of the roots.
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2.2 A bit more complicated Toeplitz matrix

We extend the matrix in the previous section to the following Toeplitz matrix:

U =


a 1
1 a 1

1 a 1
. . .

1 a 1
1 a

 .

The characteristic equation is given by the determinant

pn(λ) = det(U − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

a− λ 1
1 a− λ 1

1 a− λ 1
. . .

1 a− λ 1
1 a− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Reusing all the work in the previous section we find that the roots are such
that

a− λk = 2 cos
kπ

n+ 1
.

So,

λk = a− 2 cos
kπ

n+ 1
.

Geometrically, all the roots are projections of equally distributed points on
the upper part of the circle with radius 2, but this time shifted horizontally a
distance a. Note that we could have used a plus “+” sign instead of a minus
“-” in the right hand side of equation 2 due to the symmetry o the solution
set with respect to the axis x = a as shown in the previous section.
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2.3 A b a b Toeplitz matrix

Let us now consider the matrix:

U =


a b
b a b

b a b
. . .
b a b

b a

 .

Assuming that b 6= 0 we can divide by b the previous matrix and obtain:

Us =


a/b 1
1 a/b 1

1 a/b 1
. . .

1 a/b 1
1 a/b

 .

and resting on the result of the previous section we find that the eigenvalues
of the scaled matrix Us are:

γk =
a

b
− 2 cos

kπ

n+ 1
.

and so the eigenvalues of the original matrix U (scaling back) are:

λk = a− 2b cos
kπ

n+ 1
. (2)

2.4 Eigenvectors of the matrix Toeplitz matrix b a b

let us note the eigenvector k–th eigenvector of the Toeplitz b a b matrix U
as vk. We have that

(U − λkI)vk = 0

The i–th row of this system is given by:

b vki−1 + (a− λk)vki + b vki+1 = 0. (3)
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i = 1, · · · , n. We rewrite equation 3 by renaming indices as

b vki + (a− λk) vki+1 + b vki+2 = 0. (4)

i = 0, · · · , n−1. We padded the vk array with two extra components vk0 = 0
and vkn+1 = 0 without changing any of the equations.

Again we have here a difference equation that we could solve by apply-
ing the unilateral Z transform. After taking the unilateral Z transform on
equation 4 we find:

b Vk(z) + (a− λk)(zVk(z)− zvk0) + b (z2Vk(z)− z2vk0 − zvk1) = 0

That is,

Vk(z)[b+ z (a− λk) + z2b] = (a− λk)zvk0 + bz2vk0 + zvk1. (5)

We need an extra initial condition for vki. If we set up vk1 = 0 then the
recursion will result in vk = 0. So, in order to avoid zero eigenvectors we
need to set up vk1 = mk 6= 0. mk could be any constant. An eigenvector does
not change its condition of eigenvector after being scaled by any constant.
The eigenvector equation 5 becomes

Vk(z)
[
b+ (a− λk) z + b z2

]
= z mk

The solution eigenvector is given by the inverse Z transform of

Vk(z) =
z mk

b+ (a− λk) z + b z2
.

As we did before, let us find the roots of the quadratic equation in the
denominator.

z± =
−(a− λk)

2b
±
√

(a− λk)2 − 4b2

2b

Now, from equation 2,

a− λk = 2b cos
kπ

n+ 1
.

so

z± = cos
kπ

n+ 1
± i

√
1− cos2

kπ

n+ 1
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so after defining θk = kπ/(n+ 1) we have

z± = e±iθk

We now proceed to expand equation 6 into partial fractions. That is

Vk(z) =
z mk

b+ (a− λk) z + b z2
= z mk

(
A

z − z+
+

B

z − z−

)
We find

A =
1

z+ − z−
=

1

2i sin θk

B = − 1

z+ − z−
= − 1

2i sin θk

and

Vk(z) =
z mk

2i sin θk

(
1

z − z+
− 1

z − z−

)
=

mk

2i sin θk

(
1

1− z+/z
− 1

1− z−/z

)
=

mk

2i sin θk
[(1 + z+z

−1 + z2+z
−2 + · · ·+ zn+z

−n + · · ·

−(1 + z−z
−1 + z2−z

−2 + · · ·+ zn−z
−n + · · · ]

=
mk

sin θk

(
sin θkz

−1 + sin 2θkz
−2 + · · ·+ sinnθkz

−n + · · ·
)

If we pick mk = sin θk (remember that up to a constant, the eigenvector is
still an eigenvector). We find the k eigenvector

vki = sin i θk = sin
kiπ

n+ 1
i = 1, 2, · · ·n.

2.5 A Toeplitz matrix c a b

We now deal with the most general Toeplitz matrix on this document.

U =


a b
c a b

c a b
. . .
c a b

c a

 .
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Let us define a new matrix:

U1 =



a√
bc

b√
bc

c√
bc

a√
bc

b√
bc

c√
bc

a√
bc

b√
bc

. . .
c√
bc

a√
bc

b√
bc

c√
bc

a√
bc


.

The eigenvalues γk of U1, are related to those of U (λk) by the equation

γk =
λk√
bc
.

Now since the product (entry by entry) of the off–diagonal entries is equal to
1, the recursion characteristic polynomial would be a Chebyshev polynomials
of the second kind. That is, here

pn+2 =

(
a√
bc
− γk

)
pn+1 − pn

The roots of these polynomials satisfy:

a√
bc
− γk = −2 cos

kπ

n+ 1

so

γk =
a√
bc
− 2 cos

kπ

n+ 1

and so

λk = a− 2
√
bc cos

kπ

n+ 1

Due to the symmetry relationships shown in section 2.1 we can rewrite

λk = a+ 2
√
bc cos

kπ

n+ 1

and this produce the same set of eigenvalues. This is a most common form
for the expression of the eigenvalues of the Toeplitz matrix c a b.
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3 An approach following a more standard method

to solve difference equations

The eigenvalues of U are roots of the characteristic polynomial That is

p(λ) = det(U − λI) = 0.

That is,

pn(λ) = det



a− λ c
b a− λ c

b a− λ c
. . . . . . . . .

. . . . . . . . .

b a− λ c
b a− λ


= 0

where n is the number of rows (or columns) of A. At the moment we assume
n ≥ 2. We expand the determinant through the first row to find

p(λ) = (a− λ)pn−1 − c detB

where B is the matrix



b c
a− λ c
b a− λ c

. . . . . . . . .
. . . . . . . . .

b a− λ c
b a− λ


Then we expand the determinant of B through the first column to find

pn(λ) = (a− λ)pn−1 − bcpn−2,

and

pn(λ)− (a− λ)pn−1 − bcpn−2 = 0. (6)

This is a linear difference equation. 2 We want to find an analytic solution

2https://en.wikipedia.org/wiki/Linear difference equation
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for the function pn(λ) which is valid for all n. This equation needs two initial
conditions due to the fact that pn depends on two previous instances pn−1

and pn−2. That is, for n = 1, p1(λ) = a− λ and for n = 2

p2(λ) = det

(
a− λ c
b a− λ

)
= (a− λ)2 − bc, (7)

This could be the initial conditions. All other values of pn(λ) could be found
starting with these two initial conditions on the recursive equation 6. How-
ever, and to simplify operations we can state simpler initial conditions. Al-
though there are no matrices with n = 0 rows we could define p0(λ) = 1, and
keep the initial condition p1(λ) = a− λ. Using the recursion 6 we find that

p2(λ) = (a− λ)2 − bc

which is exactly equation 7. The solution of pn(λ) for higher n values will
not change. We then have the initial conditions

p0(λ) = 1 , p1(λ) = a− λ. (8)

We review the very basic rules to solve linear difference equation problems.
While the linear Ordinary Differential Equations (ODE) with constant co-
efficients can be solved by taking the Laplace transform on the equation to
solve, the solution of linear difference equations with constant coefficients
could be done taking the Z transform as we did in the previous section. This
method provides solutions to the general equation that can be adjusted using
the initial conditions. That is, for example, in the case of linear ODE with
constant coefficients for the function y = y(t)

any
(n) + an−1y

(n−1) + · · · a0y = 0. (9)

we find (using for example the Laplace transform) solutions of the form y(t) =
est. For the case of linear difference equations with constant coefficients we
have that

anyn + an−1yn−1 + · · · a0y0 = 0. (10)

can be solved by assuming solutions of the form yn = sn (this can be justified
using the Z transform). The substitution yn = sn in the difference equation 10
produces

ans
n + an−1s

n−1 + · · ·+ a0 = 0. (11)
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This equation is known as the characteristic equation associated with the
linear difference equations 10. The same equation shows up in the solution
of the ODE 9, with substitution of exponential solutions on the homogeneous
difference equation 10. As done in ODE methods the general solution is a
linear combination of all the solutions tn obtained from the roots t of the
characteristic equation 11. If there are no repeated roots the solutions are of
the form

yn = c1t
n
1 + c2t

n
2 + · · · cntnn.

On the other hand, if there are repeated roots we use combinations of
the form njtk where we assume that tk is repeated (say m times) with
k = 0, 1, 2, · · · ,m − 1. For example, if t4 is repeated 3 times the solutions
associated with this root would be t4, nt4, n

2t4, n
3t4. The The undetermined

coefficients ci, i = 1, 2, · · · , n can be found using the initial conditions.
We apply this bit of theory to obtain the solution of our problem. Re-

turning to equation 6 and replacing pi(λ) by ti we find the characteristic
equation

tn − (a− λ)tn−1 − bctn−2 = tn−2[t2 − (a− λ)t− bc] = 0.

That is, we need to solve the quadratic equation

t2 − (a− λ)t− bc = 0. (12)

The two solutions are

t± =
(a− λ)±

√
(a− λ)2 − 4bc

2
. (13)

The roots could be equal or different. We consider two cases;

(i) No repeated roots: The general solution pn(λ) can be written as

pn(λ) = c1t
n
+ + c2t

n
−. (14)

From the initial conditions 8 we have

1 = c1 + c2

(15)

a− λ = c1t+ + c2t−.
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This system has solution if its determinant does not vanish. That is, if

∆ = det

(
1 1
t+ t−

)
= t− − t+ = −

√
(a− λ)2 − 4bc 6= 0.

Please observe that this is consistent with the fact that t+ 6= t−. We
have then that (a− λ)2 − 4bc 6= 0. To solve system 15 we observe that
c2 = 1− c1 and

a− λ = c1t+ + (1− c1)t− = c1(t+ − t−) + t−,

That is,

c1 =
(a− λ)− t−
t+ − t−

, c2 = 1− c1 =
t+ − (a− λ)

t+ − t−
, (16)

so that the solution 14 is given by

pn(λ) = tn+
(a− λ)− t−
t+ − t−

+ tn−
t+ − (a− λ)

t+ − t−
. (17)

Now, since the sum of the roots of equation 13 is given by t+ + t− =
(a− λ) we write 16

pn(λ) = tn+
t+ +��t− −��t−
t+ − t−

+ tn−
��t+ −��t+ − t−
t+ − t−

=
tn+1
+ − tn+1

−

t+ − t−
.

This is the analytic solution of 6 with initial conditions 8 . Since we
need to know λ such that pn(λ = 0) we have that the eigenvalues λ
satisfy

tn+1
+ = tn+1

− . (18)

Note that equation tn+1
+ − tn+1

− = 0 is of degree n + 1 in λ since
tn+1
+ − tn+1

− = (t+− t−)pn(λ). We introduced a new root to the original
problem. This root satisfy the equation t+ − t− = 0. We are assuming
t+ − t− 6= 0, λ can not be a root of ∆ = 0. Please observe that ∆ = 0
implies (a− λ)2 − 4bc = 0. That is, the roots

λ = a± 2
√
bc (19)
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cannot be included in the set of solutions to the problem. Now,

t+
t−

=
t2+
t+t−

=
t2+
bc

=

(
t+√
bc

)2

(20)

where we used the product of the two roots of the quadratic equation 12
t+t− = bc. We find, using 18(

t+√
bc

)2n+2

= 1.

The solution of this equation corresponds with 2n + 2 roots located
uniformly along the unit circle. These roots are represented by

(t+)k√
bc

= e
kπi

2n+2 , k = 0, 1, · · · , 2n− 1.

so that (t+)k =
√
bc ekπi/(2n+2). From t+t− = bc we find (t−)k =√

bc e−kπi/(2n+2) and from eθ + e−θ = 2 cos θ,

(t+)k + (t−)k = 2
√
bc cos

kπ

2n+ 2
.

Now, since (t+)k + (t−)k = a− λ we have that

a− λk = 2
√
bc cos

kπ

2n+ 2

and

λk = a− 2
√
bc cos

kπ

2n+ 2
, k = 0, 1, · · · , 2n+ 1.

However pn(λ) = 0 only has n roots and we found 2n + 2. We already
eliminated two roots 19, corresponding to k = 0 and k = n + 1. We
need to exclude n other roots. If we observe equation 20 we see that
the function t+ was squared when substituting t− for

√
cd/t+. This
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introduced n new roots, corresponding to k = 1, 3, 5, · · · , 2n+ 1, which
are solutions of the equation (t+/

√
bc)2n+2 instead of the corresponding

equation (t+/
√
bc)n+1 where t+ is not squared. With this, the solutions

λk are given by the set

λk = a− 2
√
bc cos

kπ

2n+ 2
, k = 2, 4, · · · , 2n,

or

λk = a− 2
√
bc cos

kπ

n+ 1
, k = 1, 2, · · · , n.

(ii) Repeated solutions:

We have t+ = t− = (a − λ)/2. That is, the quadratic equation is a
perfect square. The recursive equation 6 has a solution of the form

pn(λ) = c1t
n
+ + c2nt

n
+.

Again, to find c1 y c2 we need to apply the initial conditions to find a
two-by-two linear system of equations.

p0(λ) = 1 = c1

p1(λ) = a− λ = (c1 + c2)t+

and so

c2 =
a− λ
t+
− 1 = 1.

Then

pn(λ) = tn+ + ntn+ =

(
a− λ

2

)n
(1 + n).
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From here we find that all eigenvalues are equal.

Recall that ∆ = 0 means λ = a± 2
√
bc, and given that λ = a we have

that a = 0 or b = 0. That is, the original matrix is lower triangular or
upper triangular where all its eigenvalues are sitting along the diagonal.
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