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The sum of irreducible fractions with consecutive

denominators is never an integer in a very weak

arithmetic

Victor Pambuccian

Most problem solvers have encountered at some stage of their lives the prob-
lem asking for a proof that the sum

1 +
1

2
+ . . .+

1

n

for n ≥ 2 is never an integer. The proof one usually finds offered for this fact is
based on Chebyshev’s theorem (Bertrand’s postulate). If one asks for a proof
that, more generally, the sum

1

n
+

1

n+ 1
+ . . .+

1

n+ k

with k ≥ 1 can never be an integer, then the proof based on Chebyshev’s
theorem needs to be amended. One first notes that, if k < n, then the above
sum must be less than 1, and thus cannot be an integer, and if k ≥ n, then one
applies the same proof based on Chebyshev’s theorem (this fact seems to have
been overlooked in [6], where the author wants to use Chebyshev’s Theorem,
but finds it necesary to make the proof dependent on another deep result, the
Sylvester-Schur Theorem, as well). However, Kürschák [3] (see also [7]) found
a much simpler proof, which relies on the very simple observation that among
any number (≥ 2) of consecutive positive integers there is precisely one, which
is divisible by the highest power of 2 from among all the given numbers. Aside
from its didactical use, one may wonder whether Kürschák’s proof is not in a
very formal way much simpler, i. e. whether it does not require simpler methods
of proof in the sense of formal logic.

When formalized, arithmetic is usually presented as Peano Arithmetic, which
contains an induction axiom schema, stating, loosely speaking, that any set that
can be defined by an elementary formula in the language of arithmetic (i.e. in
terms of some undefined operation and predicate symbols, such as +, ·, 1, 0, <),
which contains 1, and which contains n+1 whenever it contains n, is the set of
all numbers. Several weak arithmetics have been studied, in which the types of
elementary formulas allowed in the definitions of the sets used in induction are
restricted by certain syntactic constraints (see [1]), and one might think that
Kürschák’s proof would make it in a weaker formal arithmetic than the one
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dependent on Chebyshev’s theorem. It turns out that, in fact, no amount of
induction is needed at all!

To see this, let’s first generalize the problem further, along the lines of the
generalization in [5], so that there can be no proof based on Chebyshev’s The-
orem.

Theorem 1 The sum

m0

n
+

m1

n+ 1
+ . . .+

mk

n+ k
(1)

with (mi, n+ i) = 1, mi < n+ i, and k ≥ 1 is never an integer.

Proof. (Kürschák [3]). Let a = max{α : 2α|(n + i) for some 0 ≤ i ≤ k }.
Then 2a divides exactly one of the numbers n, n + 1, . . . , n + k. Let l =
lcm (n, n + 1, . . . , n + k). Suppose the sum in (1) is an integer b. Multiplying
both (1) and b by l, we obtain on the one hand an odd number, and on the
other an even number, which have to be equal. �

Moreover, to make it a theorem of arithmetic, we will do away with the
fractions appearing in it, and state it, for all positive k ∈ N, as ϕk, the following
statement (where we denote by u the term ((. . . ((1+1)+1)+ . . .)+1), in which
there are u many 1’s; the terms u will be referred to as numerals)

(∀n)(∀m0) . . . (∀mk)(∀p)

k∨

i=0

((∀a)(∀b)mia 6= (n+ i)b+ 1) ∨

k∨

i=0

n+ i < mi

∨

k∑

i=0

(mi

∏

0≤j≤k,j 6=i

(n+ j)) 6= p

k∏

j=0

(n+ j).

The arithmetic we will show it holds in is PA−, which is expressed in a
language containing as undefined operation and predicate symbols only +, ·, 1,
0, and <, and whose axioms A1-A15 were presented in [2, pp. 16-18]. We will
repeat them here for the reader’s convenience, and we will omit the universal
quantifiers for all universal axioms.

A 1 (x+ y) + z = x+ (y + z)

A 2 x+ y = y + x

A 3 (x · y) · z = x · (y · z)

A 4 x · y = y · x

A 5 x · (y + z) = x · y + x · z

A 6 x+ 0 = x ∧ x · 0 = 0

A 7 x · 1 = x
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A 8 (x < y ∧ y < z) → x < z

A 9 ¬x < x

A 10 x < y ∨ x = y ∨ y < x

A 11 x < y → x+ z < y + z

A 12 (0 < z ∧ x < y) → x · z < y · z

A 13 (∀x)(∀y)(∃z)x < y → x+ z = y

A 14 0 < 1 ∧ (x > 0 → (x > 1 ∨ x = 1))

A 15 x > 0 ∨ x = 0

What is missing from PA−, and makes it so weak (indeed, the positive cone
of every discretely ordered ring is a model of PA−), is the absence of any form
of induction.

The proof that ϕk holds in PA− will be carried out in an arbitrary model
M of PA−. The idea of proof will be to show that all variables that appear in
ϕk must be numerals. An essential ingredient of the proof is the following fact,
which holds in PA− (see [2, Lemma 2.7, p. 22]), for all positive k ∈ N

x < k → x = 0 ∨ x = 1 ∨ . . . ∨ x = k − 1,

and which allows us to deduce that any element that is bounded from above by
a numeral must be a numeral.

Suppose that, for some positive k ∈ N, ϕk does not hold in M. Then, for all
i = 0, . . . , k, there are mi, p, ai and bi with miai = (n+ i)bi + 1 and such that

k∑

i=0

(mi

∏

0≤j≤k,j 6=i

(n+ j)) = p

k∏

j=0

(n+ j). (2)

This can be rewritten, by leaving only the first term of the sum on the
left-hand side, and sending all others to the right-hand side with changed sign,
as m0(n + 1) . . . (n + k) = nq, where by q we have denoted p

∏k

j=1
(n + j) −

(
∑k

i=1
mi

∏
0≤j≤k,j 6=i(n+j)). The product (n+1) . . . (n+k) can also be written

as a polynomial in n, whose free term is k!, i. e. as nr+k!, thus m0(nr+k!) = nq.
Given that there are a0 and b0 such thatm0a0 = nb0+1, if we multiply both sides
of the equality m0(nr+ k!) = nq by a0 we obtain (nb0+1)k! = n(a0q− a0m0r),
thus k! = n(a0q − a0m0r − b0k!). We know that M must contain a copy of N,
and it may contain other elements as well, called nonstandard numbers. Could
n be in M but not of the form m for some m ∈ N? If it were such an element
of M, then it would be greater than all m with m ∈ N, and thus so would
n(a0q−a0m0r− b0k!), unless a0q−a0m0r− b0k! = 0, which cannot be the case,
as k! is not zero. However, n(a0q − a0m0r − b0k!) cannot be greater than all
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m with m ∈ N, for it is equal to such a number, namely to k!. Thus n must
be an m for some m ∈ N. This means that in (2) all variables are numerals, i.
e. i’s for some i ∈ N. However, we know, from Kürschák’s proof, that such an
equation cannot exist, so, for all k ∈ N, ϕk holds in PA−.

Another generalization of the original problem, proved by T. Nagell in [4],
states that the sum

1

m
+

1

m+ n
+

1

m+ 2n
+ · · ·+

1

m+ kn

is never an integer if n,m, k are positive integers. The proof is rather involved
and uses both a Kürschák-style argument and Chebyshev’s theorem. This state-
ment turns out to be, with k instead of k, valid in PA− as well. To see this,
let, for all positive k ∈ N, νk stand for

(∀m)(∀n)(∀p)m > 0∧ n > 0 →

k∑

i=0

∏

0≤j≤k,j 6=i

(m+ jn) 6= p
∏

0≤j≤k

(m+ jn), (3)

and let M be again a model of PA−. Notice that, if m > k, then, then ¬νk
cannot hold for any n and p. To see this, suppose that, for some n and p, we have
equality in (3). Given that (m+n) . . . (m+kn) is the largest of all the summands
on the left-hand side, and there are k summands, the sum on the left-hand side is
≤ k(m+n) . . . (m+kn), and thus < m(m+n) . . . (m+kn), thus equality cannot
hold in (3). Thus m ≤ k, and thus (see [2, p. 20]) m must be standard, i. e. it
must be u for some 0 < u ≤ k. It remains to be shown that n must be standard
as well. To see this, suppose again that, for some n > 0 and p, we have equality
in (3). Notice that, since m(m+ 2n) . . . (m+ kn) is the largest product among
all

∏
0≤j≤k,j 6=i(m+ jn), for i = 1, 2, . . . k, the sum on the left hand side of our

equality is ≤ (m+n) . . . (m+kn)+km(m+2n) . . . (m+kn) (with equality if and
only if k = 1). Thus pm(m+n) . . . (m+kn) ≤ (m+n+km)(m+2n) . . . (m+kn),
which implies pm(m + n) ≤ m + n + km. If n were nonstandard, then this
inequality were possible only if pm = 1, i. e. if p = m = 1, which is not possible,
for in that case the first summand on the left hand side of (3) is equal to the
right hand side, thus the left hand side must be larger than the right hand side,
so equality could not have taken place in (3). Now that m,n, k have all been
shown to be standard, Nagell’s proof implies the truth of our statement, which
thus holds in PA−.

By Gödel’s completeness theorem, there must exist syntactic proofs that ϕk

and νk hold in PA−, i. e. formal derivation of ϕk and νk from the axioms of
PA−. Such a formal proof for ϕk cannot use the idea behind Kürschák’s proof,
for it is not even true in PA− that among n, n+1, . . . n+ k, there is a multiple
of 2 (see [2, p. 18]). Thus there must exist even simpler proofs for both ϕk and
νk and they are worth finding. Such proofs would reveal the real reasons why
these results hold, and the reason must be of an algebraic nature, for there is
no traditional number theory to be found in PA−.
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Helv. 8 (1935), 186–187.
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