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On the axiomatics of projective and affine geometry
In terms of line intersection

Hans Havlicek Victor Pambuccian

Abstract

By providing explicit definitions, we show that in both affiaad projective geometry of di-
mension> 3, considered as first-order theories axiomatized in ternis@$ as the only vari-
ables, and the binary line-intersection predicate as fiviennhotion, non-intersection of two
lines can be positively defined in terms of line-intersettio
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M. Pieri [15] first noted that projective three-dimensiosphce can be axiomatized in terms of
lines and line-intersections. A simplified axiom system weesented in [7], and two new ones in
[17] and [10], by authors apparently unaware of [15] and Mjother axiom system was presented
in [16, Ch. 7], a book devoted to the subject of three-dimamadi projective line geometry.

One of the consequences of [4] is that axiomatizability mmte of line-intersections holds not
only for n-dimension projective geometry with= 3, but for alln > 3. Two such axiomatizations
were carried out in_[14]. It follows from_[5] that there morethan just plain axiomatizability
in terms of line-intersections that can be said about ptvjegeometry, and it is the purpose of
this note to explore the statements that can be made inséde tiheories, or in other words to
find the definitional equivalent for the theorems of Brauir Havlicek [5], and Havlicekl[6],
which state thabijectivemappings between the line sets of projective or affine spafcie same
dimension> 3 which map intersecting lines into intersecting lines steon collineations, or, for
three-dimensional projective spaces, from correlati¢Bse also[1, Ch. 5], [9], and [11]).
We shall also prove that, in the projective caseyfor 4, ‘bijective’ can be replaced by ‘surjective’
in the above theorem, and the same holds in the affine case¥o3.
Let £ denote the one-sorted first-order language, with indiidaiaables to be interpreted hses,
containing as only non-logical symbol the binary relatigmbol ~, with a ~ b to be interpreted
as ‘a intersectd’ (and thus ardalifferentlines).
Given Lyndon’s preservation theorem ([13], see dlso [8, C013.5, p. 500])—
Theorem. Let £ be a first order language containing a sign for an identicddyse formula,7
be a theory inl, and¢(X) be anL-formula in the free variableX = (X,...,X,). Then the
following assertions are equivalent:
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(i) there is a positiveC-formulay(X) such that7 F ¢(X) < (X);

(i) for any 2,8 € Mod(T), and each epimorphisrfi : 24 — 9B, the following condition is
satisfied: ifc € A™ and2 = ¢(c), thenB = ¢(f(c)).

—there must exist a positivé-definition for the non-intersection of two lines (note toat ‘sign
for an identically false formula’ i ~ a).

1 Projective Spaces

1.1 Dimension> 4

We start with projective geometry of dimensian> 4. We shall henceforth write ~ b for
a~bVa=>baswellagay,...,a, ~by,...,0,) for /\1997189aZ ~ b;.

We first define the ternary co-punctuality predicatewith S(abc) standing for &, b, ¢ are three
different lines passing through the same point’ by (additio the indices, whenever the stated

bound for the index variable is exceeded, is mod 3 througtin@upaper)

S(ajasaz) = (Vg)(3h)g~hA (/\(ai ~ i1, h)) (1)

=1

It is easy to see thdil(1) holds when the lingare different and concurrent. Should the three lines
a; intersect pairwise in three different points, then they lddae coplanar and, by > 4, for a line

g which is skew to that plane, we could not find an appropriaieAi Next we define the closely
related ternary predicatg, whereS(abc) stands for & passes through the intersection pointof
andb’ by

S(abc) & S(abe)V (awb/\(c:a\/c:b)>, (2)

and then the quaternary predicatewith ab # cd to be read as ‘the intersection pointcoandb is
different from that ok andd’ by

arby # aghy (vg)ath/Q\ a; ~ b;) ((/\Sazbh)/\Shlhgg) (\2/ a”g)).(s)

In fact, suppose tha?, := a; Nb; andP, := a, N b, are points and thatis a line. If P, or P, is on
g, then the existence @f, andh, is trivial. If P, and P, are not ory (figure[1), then forP, # P,
there exists a poinl € g which is not on(P;, ), i. e. the line joiningP, and P; hence the lines
hi := (P;, H) (i = 1,2) have the required properties. On the other han#, i= P, ¢ g, then [3)
cannot be satisfied, siné&h,, hy, g) would imply hy # hs, butS(a,, b;, h;) would forceh; = hs.
Notice that we can now define positively the negation of ligeadity by

a#b & (Ig)ag#bg, (4)

which proves that a surjective map between the sets of li®gogprojective spaces of dimension
n > 4, which maps intersecting lines into intersecting linesstine injective as well.



Figure1. Figurel2.

We are now ready to define the non-intersection predigater n-dimensional projective spaces
with n > 4. Letm = [251]. Forn even we have

ay 7(4 by & (CL1 = bl) V (3 as. .. am)(Vg)(EI by ... berl) (5)
m+1
/\ bia;—1 # bibi—1 N g ~ b1,
=2

and forn odd we have

ay ’/‘ b & (a1 = bl) V (3 as. .. am)(Vg)(EI by ... bm+102 C Cm+1) (6)
m—+1
/\ (bja;—1 # bibi_1 A ciai—1 # ¢ici1) A b1 g # Cmag-
=2

These two definitions state thataif does not interseét, and ifa; # by, then the sefay, b; } can
be extended to a linearly independentdet= {b,,ay, .. .a,,} (note than ifn = 4, thenm = 1, so
there are na’s bound by the existential quantifier {d (5) at all) spanrargubspac# of dimension
2m + 1, i. e. the whole projective spacerifis odd, or a hyperplane i is even (se€ |3, 11.5]). In
both cases, any lingcan be reached froM in the manner described inl (5) and (6),¢d#es in U
if n is odd, and thus has two different points common with it[§d(@ds, and; intersectd’ in at
least one point if: is even, so[(5) holds. See figlide 2 for the case 6.

If a; intersectsi,, then the dimension of the subspd¢espanned by anyl containinga; anda,
will be, for n even, at most. — 2, so there are lineg which do not intersedV/, and thus cannot
be reached in the manner describedn (5), andisf odd, the dimension df is at most» — 1, so
there are lineg which intersectg/ in one point, so for those lines definitidd (6), which reqsire
that the lineg intersectd’ in two different points, cannot hold.

Given (1), (2), [(B), it is obvious that-dimensional projective geometry with > 3, can be
axiomatized insideC, as one can rephrase the axiom system based on point lirdenog of
the Veblen-Young type (for example the one in Lenz [12, p.2D§+0 which lower- and upper-
dimension axioms have been added) in terms of line inteecbnly, by replacing each ‘point
P’ with two intersecting lineg; andp,, the equality of two points® and @, which have been
replaced by(p;, p») and(qi, ¢2), by S(p1p2g1) A S(p1p2q2) and every occurrence of*is incident
with I’ by S(pip2l). This has been carried out in [14].

Since in some models (e. g. over commutative fields) of tkiigeensional projective geometry
there are correlationsy cannot be definable in terms 6f, so the approach used for dimensions
> 4 falls in this case. Howeve# is positively definable, with negated equality allowed,emts

of ~, and it is to this definition that we now turn our attention.



1.2 The three-dimensional case

In the three-dimensional case, we first define the ternaatiogl’?’, with 7"(abc) holding if and
only if ‘either the three different lineg, b, c intersect pairwise in three different points (and then
we callabc atripod) or they are concurrent, but do not lie in the same plane (iiclvtase we call
abc atrilateral)’, by

T(ayasas) = (Y g1g2)(3x12923) (91, go ~ T1, To, T3) (7)

A A= Ao ) ) 1 (Ve ).

=1

To see that the above definition holds whegn,as is a trilateral, letd; be the point of intersection
of the linese; anda; ., for: = 1, 2, 3 (figurel3). Through each, there is a liner; intersecting (and
different from) bothg; andg,. Thex; satisfy the conditions of {7) since they cannot all coincide
given that no single line can, by the definition of a trilateass throughd,, A,, As. A dual
reasoning to that presented for the case in whighas is a trilateral shows that the definitidd (7)
holds for tripodsz; asas as well.

To see that the only other case that could occur, givendhat a; for all ¢ # j, namely that in
which the three lines,, as, a3 are lying in the same planeand have a poin® in common, does
not satisfy [(¥), we choosg, g, such that they are skew, notin and intersect the line, in two
points that are different fron® (figure[4). The only line that meetg, g» and two of the lines
a1, as, ag is a itself.

a1

g1 g2

ai

@)

a2 a3

92 / \\ //ﬁ

Figure3. Figure[4.

Next, we define a sexternary predicate, with abc =, o'’ to be read asabc andd't’'c’ are
either both trilaterals or both tripods’, by

a1b101 =4 CLQbQCQ = (Vg)(EIx11x21x12x22x13x23)
3

/\ (T(aib@'cz-) A (/\(azm >~ a;, b, i, 9) N (255 # :cmﬂ))) (8)

i=1 j=1
3
VAN (/\xlj ~ l‘gj).
J=1

Suppose that; b, c; andagbac, are trilaterals in planes, andn,, respectively. Then the lines;
can be chosen as follows: If (), # m and if g is skew to the lines = m; N 7y, then we choose



three distinct points(;, X», X5 ons, and we let;; be the line joiningX; with g N7, (figure[B). If
(i) m # m and ifg ands are not skew, then we choo&gto be a point lying on both ands, and
we letz; = z97 = s, and choose for;; andx;; any two distinct lines througty’ in the planer;,
which are different frons. If (iii) 7 = m = 7, then we letr;; = x91, 12 = 199, aNdx13 = To3
be any three distinct lines iinthrough a point common te andg. In case bothu,b,c; andasbyco
are tripods, the reasoning is, by dint of duality, similar.

Shoulda,b;c; be a trilateral in a plane, andasb,c, be a tripod with the vertex (point of concur-
rence)P, then we lety be a line which neither passes througmor lies inx (figurel6). LetG be
the point of intersection of with 7, and lety be the plane spanned lgyand P. If lines z;; were
to satisfy the conditions in the second line[of (8), tliér z,; C 7 andP € z,; C ~, and since at
least two of the lines;,;, sayz,; andxz;,, must be different fromr N -, the conditionse;; ~ x4
andzi, >~ x99 IMply that bothz,; andxy, have to be the line joining with GG, so they cannot be
different, as required by the definiens|inh (8).

oy 9

Figure5. Figure®.

We now define the sexternary predicate, with abc =_ do'b'¢’ standing for abc anda’t/c are (in
any order) a trilateral and a tripod’, by

2

(1,16101 =_ a2b202 = (‘v’g)(EI IL'lZL'Q) /\ ((ZL‘Z >~ a;, bz‘,CZ‘) A\ T(albzcz)> (9)

i=1

2
A (\/(g =x; V abic; =4 gx1x2)>.

i=1

Supposer b, ¢, is a trilateral, lying in the plane, andasb,c, is a tripod, with vertexP. If g is a
line in = then we choose; = g and asr; any line throughP. The case thaj passes througk
can be treated similarly. Hence we may restrict our attartiche case in which neither lies in
7 nor passes through, and denote in this case lBythe point of intersection of andx, and byy
the plane spanned by andg.

Then (i) if P £ 7, we letz, be the line joiningP andG, andz; be any line inr passing through
G and different from the liner N v (figurelX), and (ii) if P € 7, then we letr, be the line joining
P with G, and we letr; be any line inr passing througly, but different fromz,, (figure[8).

Now if both a1b,c; andasbyco Were trilaterals lying in the same plane, then for any lineot
lying in that plane, we could not find, andz, with the desired properties, as the requirement
that \>_, (z; ~ a;, b;, c;) forces them to lie inr, and so they can neither be equalgtaor form
a trilateral with it. If botha,b;c; andasbyco Were trilaterals lying in different planes, and s,
whose line of intersection i5 then for any lingy intersecting but lying neither inmy nor in m,,



we could not find the desiredy andz,, as the conditiorf\le(:ci ~ a;, b;, ¢;) forces them to lie in
w1 andmy, so they can neither be equalgpnor from a trilateral with it. A dual reasoning shows
that, if a1b,¢; andasbyco were both tripods[(9) could not hold.

P g
.CCZ
G
X1 ™
7
FigurelT. Figurel8.

The sexternary predicate,,, with abc =5 o'b'¢ standing for abc anda’b’'c’ are both trilaterals
lying in differentplanes or both tripods wittlifferentvertices’, is defined by

(1,16101 =0 a2b202 = (3 l‘ll'gl‘g) alblcl =4 a2b202 A (1‘3 ~ dq, bl, C1, 9, bg, CQ) (10)

2
N a1b101 =_ T1T9X3 N (/\(SCZ ~ U, bi, Cz))

i=1

If a1b;c; andaybscy are both trilaterals (the tripod case is treated duallypgyn different planes
w1 andm, intersecting ing, then we choose a poitit on g as the vertex of a tripod, z,x3, where
x3 = g, x1 liesinmy, andz, lies inm,. If a1b,¢; andasbyco Were both trilaterals lying in the same
planer, then anyzx,, x4, x3 satisfying the intersection conditions 6f {10) would hawédélong to
7, and thus could not form a tripod.

We are finally ready to define positively, with allowed, the skewness predicatewith o (ab) to
be read ‘the lineg andb are skew’, by

o(ab) = (Yg)(Fzaraghibs) (x ~ a,b) A (x ~ g) (11)
2
/\(aaix =, bbix A aa;x =g bbyx) A aaix =_ aasx.

i=1

Suppose: andb are skew, and leP be a point oru (figure[9). The lingg must have a poink in
common with the plane determined Byandb. Let x be a line containing’, R and intersecting
in a point@. Leta; be any line throughP that does not lie in plane determined byndzx, a, be
any line intersecting both anda in points different frompP, b, a line through?) not in the plane
determined by andx, andb, a line intersecting andx in points different from@). With these
choices the definiens in(lL1) is satisfied.

Shoulda intersect, and should be chosen such thabg forms a tripod with vertexX?, then, given
that (z ~ a,b) A (x =~ g), thex required to exist by[(11) would have to pass throughSince
aa1x =_ aasx, ONe ofaa,x Or aasx Must be a tripod. W. |. 0. g. we may suppaegex is a tripod.
By aa;x =, bbyx, bbyx must be a tripod as well, and lay,, = =4 bb;x the two tripods must have
different vertices, which is impossible, for, regardletthe choice ofz; andb,, the vertex of both
tripods isP.
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Figurel9.

The positive definition (in terms of with # allowed) of the non-intersection predicate we were
looking for in the three-dimensional case is

artb & a=>bVo(ab). (12)

However, we do not know whethet, the negated line equality, is positively definable in teohs
~, and thus whether it is possible to have a thoroughly pasdefiniens in[(112).

2 Affine spaces

Notice that[(1)-f(#) are valid in-dimensional affine geometry withh > 3 as well, since for any
plane there is a disjoint parallel line.

Since [4) holds, any surjective map between the sets of bhéso affine spaces of dimension
n > 3, which maps intersecting lines into intersecting lines ninesinjective as well.

In affine geometry, we distinguish two cases: (A) the one inctvlevery line is incident with
exactly two points (and then the space can be coordinatigéeltt§2)), and (B) the one in which
every line is incident with at least three points. The nundfed! lines isk := 2"~1(2" —1) in case
(A), whereas in case (B) this number is strictly greater thaidence we can characterize cases
(A) and (B) by

a = Vay.oxp)( \/ T; = ;) (13)

1<i<j<k+1

and— «, respectively. It is worth noticing that the negated edigaiin —~« can be avoided alto-
gether, without usind{4), and that the number of variabiiesi can be greatly reduced, by taking
into account that in case (A) there are no more tlian 1 pairwise intersecting lines, namely all
the lines through a fixed point, whereas in case (B) this nunsiexceeded. Therefore

B @arae)(\ mi~a) (14)
1<i<j<2n
positively characterizes case (B).

Affine geometry can be axiomatized in terms of points andslivéth point-line incidence and
line-parallelism as primitive notions, and the first sucloaxatization was presented in [182].



Affine geometry of a fixed dimensian > 3, in which (A) holds, cannot be axiomatized inside
as itis not possible to define the line-parallelism predigan terms of line-intersection, given that
there are maps that preserve betland-¢, but which do not presenjg but it can be axiomatized
in terms of lines~, and||. Affine geometry of a fixed dimensian > 3, in which (B) holds, can
be axiomatized insidg, by rephrasing the axiom systemin [£2] in terms of lines and- (this is
possible in this case as|| b can be replaced by(ab) Aa ¢ b, wherer is the coplanarity predicate
defined below in[(16)), and by adding suitable dimensionmasioHowever, regardless of whether
(A) or its negation has been added to the axiom systemrdimensional affine geometry with
n > 3, itis true that¥ can be defined positively in terms of, given that#, which occurs in[(15),
can be defined positively by means|of (4).

If every line contains exactly two points, i. e. in case (Agn it is quite easy to define positively
the non-intersection predicate by observing that, if twiéedent lines do not intersect, then there
is more than one line that intersects the two lines in diffepoints, but if they do intersect there
is only one such line. Therefore the definition in this case is

aq 7{4 ay & a3 =ag V (a VAN (3 blbg) b1 7& bg VAN (/\albi #(IgbZ)) . (15)
=1

We denote the definiens of this definitionyThe conjuncty in (18) is not needed if we regard it
plainly as a definition of non-intersection inside theheory ofn-dimensional affine spaces over
GF(2), but we shall use in the general case, where we have no information regarbdmguamber
of points incident with a line, below, and there we do need ¢bajunct as well.

From now on, we assume that lines are incident with more tivanpbints. For all dimensions
n > 3 we can define the coplanarityof two lines (which are allowed to coincide) by

m(ab) &= (Jede)S(acd) N S(bce) Nd~bAd~eNe~ a. (16)
See figuré_10.
a
e
c
d
b

Figure[10.
To define non-intersection im-dimensional affine space with> 3, we need the following

Lemma. Letn > 3, m = [2], letay, ..., a, bem independent lines in-dimensional affine
space, leUU = (a4, ..., a,,) be the subspace spanned by these lines, and tet(a;, ..., a,_1).
Then for any poinf? € U there are (not necessarily distinct) lineésandb,, such that, joins a
point in V' with a point ona,,, b, joins a point inV” or in a,, with a different point orb;, and P
lies onbs,.



Proof. If Pisona,, (orif P € V), then choosé, = b, to be a line joiningP with a pointinl
(orina,,). If Pis neither om,, norinV, then the subspace®, a,,) and(P, V') intersect in a line
x. If x intersects botla,, andV in a point, then we leb; = b, = x. Sincex cannot be parallel
to bothz andV/, if it doesn't intersect both, it may be parallel to only orfaleem, i. e. either (i)
x || Vor (i) z || an. Let X be the point of intersection af with (i) a,, or (i) V. LetY be a point
in (i) V or (ii) a,,, letZ be the parallel through’ to x, andb, := (X, Y’). (Figure 11 depicts case
(i) for m = 2, so thatV’ = a; andz = a,.) Let Z be a third point ord; and letb, := (P, Z). The
line b, is not parallel tar and thus intersects (Iy or (ii) a,, in a point which is different fron¥.

U

We now define some auxiliary predicates. Béta; ... a,,x) stand for & is one of the lines; or
it intersects two of these lines in different points’, i. e.

m

M(ay...anx) & (\/x:az)\/( \/ aix#ajx). a7)

i=1 1<i<j<m

Closely related ta\/, we introduce
q
My(ay ... apx) = (Fby...b) N\ M(ar...amby.. b)) AM(ay. . ambi...ba).  (18)
=1

If (L8) holds then the line: belongs to the affine subspace spannedby.., a,,, Since it can be
‘reached’ with the help of the auxiliary linés, . . ., b,.

With m standing for[”T“], whenevem; # a,, we can find liness, . . ., a,, such thatu, ..., a,,
are independent. Léf be the subspace spanned by them. We infer from the above lethata
each lineh in U satisfiesM,.(a; . .. a,,h) for r = 21 — 4, Recall that3 ensures that we are in
case (B). So we can now state the definition of non-intersectvhenn is even (in this cas# is

a hyperplane, so that to any ligghere exists a liné in U coplanar withy) as

ap Fag e ap=azV (5 A(Fag...an)Vg)(3h)T(gh) AN M. (a; .. .amh)>. (19)
If nis odd,U is the whole affine space, so any lipdes inU, and thus

a1 X as & a; =asV (6/\ (Jas...am)(Vg) Mr(al...amg)). (20)

The definiens of the definitions in_(19) and{20) are denoted)lands,, respectively.

Finally, we return to the general casereflimensional affine geometry. By ([15), {19), ahdl(20) the
definition of non-intersection is

ay ay & YV 52(%7[%1). (21)

3 Higher-dimensional subspaces

Given [4], n-dimensional projective geometry can also be axiomatizeéd ¥dimensional sub-
spaces (for all < k£ < n — 1 with 2k + 1 # n) as individual variables and a binary intersection
predicate~, with a ~ b to be interpreted as ‘the subspaaemdb intersect in & — 1-dimensional
subspace’. From the resultsin [9] it follows that the noteisection predicate is also positively de-
finable in terms of the intersection predicate (negatedlagumallowed), but the actual definition
will very likely be prohibitively intricate.
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