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Abstract

We investigate a coin-weighing puzzle that appeared in the all-

Russian math Olympiad in 2000. We liked the puzzle because the

methods of analysis differ from classical coin-weighing puzzles. We

generalize the puzzle by varying the number of participating coins, and

deduce a complete solution—perhaps surprisingly, the objective can

be achieved in no more than two weighings regardless of the number

of coins involved.

1 Introduction

The following coin-weighing puzzle, due to Alexander Shapovalov, appeared
in the Regional round of the all-Russian math Olympiad in 2000 [2].

Eight coins weighing 1, 2, . . . , 8 grams are given, but which weighs
how much is unknown. Baron Münchhausen claims he knows
which coin is which; and offers to prove himself right by con-
ducting one weighing on a balance scale, so as to unequivocally
demonstrate the weight of at least one of the coins. Is this possi-
ble, or is he exaggerating?
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We chose to investigate this puzzle partly because classical coin-weighing
puzzles [1] tend to ask the person designing the weighings to discover some-
thing they do not know, whereas here the party designing the weighings
knows everything, and is trying to use the balance scale to convince some-
one else of something. There is therefore a difference of method: when the
weigher is an investigator, they typically find themselves playing a minimax
game against fate: they must construct experiments all of whose possible
outcomes are as equally likely as possible, in order to learn the most they
can even in the worst case. The Baron, however, knows everything, so he has
the liberty to construct weighings whose results look very surprising from the
audience’s perspective.

We invite the reader to experience the enjoyment of solving this puzzle
for themselves before proceeding; we will spoil it completely on page 4.

1.1 The Sequence

We will generalize this puzzle to n coins that weigh 1, 2, . . . , n grams. We
are interested in the minimum number of weighings on a balance scale that
the Baron needs in order to convince his audience about the weight of at
least one of those coins. It turns out that the answer is never more than two;
over the course of the paper, we will prove this, and determine in closed from
which n require two weighings, and which can be done in just one.

1.2 The Roadmap

In Section 2 we define the Baron’s sequence again and show some of the flavor
of this problem by calculating the first few terms. In Section 3 we prove the
easy but perhaps surprising observation that this sequence is bounded; in
fact that no term of this sequence can exceed three. That theorem opens
the door to a complete description of all the terms of Baron Münchhausen’s
sequence, which we begin in Section 4 by explicitly finding the terms that
are equal to one [8], to wit, the numbers n of coins such that the Baron can
prove the weight of one coin among n in just one weighing.

Discriminating between two weighings sufficing and three being necessary
is harder. The remainder of the paper is dedicated to proving that three is
not a tight upper bound; namely that the Baron can always demonstrate the
weight of at least one coin among any n in at most two weighings. Section 5
serves as a signpost by restating the theorem, and Section 6 briefly introduces
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some notation we will use subsequently. The actual proof is sufficiently in-
volved that we break it down into a separate Section 7 for preliminaries, and
then the proof itself in Section 8.

Finally, we close with Section 9 for some generalizations and ideas for
future research.

2 Baron Münchhausen’s Sequence

Baron Münchhausen’s sequence a(n) is defined as follows:

Let n coins weighing 1, 2, . . . , n grams be given. Suppose Baron
Münchhausen knows which coin wieghs how much, but his audi-
ence does not. Then a(n) is the minimum number of weighings
the Baron must conduct on a balance scale, so as to unequivocally
demonstrate the weight of at least one of the coins.

The original Olympiad puzzle is asking whether a(8) = 1.

2.1 Examples

Let us see what happens for small indices.
If n = 1 the Baron does not need to prove anything, as there is just one

coin weighing 1 gram.
For n = 2 one weighing is enough. Place one coin on the left cup of the

scale and one on the right, after which everybody knows that the lighter coin
weighs 1 gram and the heavier coin weighs 2 grams.

For n = 3, the Baron can put the 1-gram and 2-gram coins on one cup
and the 3-gram coin on the other cup. The cups will balance. The only way
for the cups to balance is for the lone coin to weigh 3 grams.

For n = 4, one weighing is enough. The Baron puts the 1-gram and
2-gram coins on one cup and the 4-gram coin on the other cup. The only
way for one coin out of four to be strictly heavier than two others from the
set is for it to be the 4-gram coin. The 3-gram is also uniquely identified by
the method of elimination.

For n = 5, Baron Münchhausen cannot do it in one weighing. This
example is small enough to prove exhaustively: every possible outcome of
every possible weighing admits of multiple assignments of weights to coins,
which do not fix the weight of any one coin. For an example of the reasoning,
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suppose the Baron puts 1 coin on one cup and 2 coins on another, and shows
that the single coin is heavier. All of 1 + 2 < 4, 2 + 1 < 5, and 1 + 3 < 5 are
consistent with this data, so no coin is uniquely identified. Checking all the
other cases, as usual, is left to the reader.

For n = 6, one weighing is enough. This case is similar to the case of
n = 3: 1 + 2 + 3 = 6.

For n = 7, one weighing is enough. This case is similar to the case of
n = 4: 1 + 2 + 3 < 7.

For n = 8, the original Olympiad problem asks whether one weighing is
enough. It is—Baron Münchhausen can convince his audience by placing all
the coins weighing 1 through 5 grams on one cup of the scale, and the two
coins weighing 7 and 8 grams on the other. The only way for two coins with
weights from the set 1, 2, . . . , 8 to balance five is for the two to weigh the
most they can, at 7 + 8 = 15 grams, and for the five to weigh the least they
can at 1 + 2 + 3 + 4 + 5 = 15 grams. This arrangement leaves excactly one
coin off the scale, whose weight, by elimination, must be 6 grams.

So Baron Münchhausen’s sequence begins with 0, 1, 1, 1, 2, 1, 1, 1. It
also turns out that these examples illustrate all the methods of proving the
weight of one coin with just one weighing; we will prove this in Section 4.

3 Three Weighings are Always Enough

In most of the coin problems we remember from childhood [1] the number of
weighings needed to solve the problem grows logarithmically with the number
of coins. Thus, our upper bound theorem may come as a surprise:

Theorem 3.1. a(n) ≤ 3.

Before going into the proof we would like to introduce a little notation.
First, we denote the x-th triangular number x(x+ 1)/2 by Tx.

We already did this in our example weighings, but we would like to make
official the fact that, when describing weighings the Baron should carry out,
we will denote a coin weighing i grams with just the number i. In addition,
we will use round brackets to denote one coin of the weight indicated by the
expression enclosed in the brackets. We need this notation to distinguish
i+1, which represents two coins of weight i and 1 on some cup, from (i+1),
which represents one coin of weight i+ 1 on some cup.
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Proof. We know, since Carl Friedrich Gauss proved it in 1796, [4, 6] that
any number n can be represented as a sum of not more than 3 triangular
numbers. Let n = Ti + Tj + Tk, where Ti ≤ Tj ≤ Tk are triangular numbers
with indices i, j, and k.

Barring special cases, Baron Münchhausen can display a sequence of three
weighings with one coin on the right cup each: first

1 + 2 + 3 + · · ·+ k = Tk,

then
Tk + 1 + 2 + 3 + · · ·+ j = (Tk + Tj),

and finally
(Tk + Tj) + 1 + 2 + 3 + · · ·+ i = n.

The first weighing demonstrates a lower bound of Tk on the weight of the coin
the Baron put on the right. Since he then reuses that coin on the left, the
second weighing demonstrates a lower bound of Tk + Tj on the weight of the
coin that goes on the right in the second weighing. Since he then reuses that
coin in the third weighing, the audience finds a lower bound of Tk+Tj+Ti on
the coin on the right hand side of the last weighing. But since there are only
n coins, there is already an upper bound of n on that coin’s weight, so the
assumed equality Tk + Tj + Ti = n determines that coin’s weight completely
(as well as the weights of the Tk- and (Tk + Tj)-gram coins).

The Baron should start with the largest triangular number to make sure
that he will not need any coin to appear in the same weighing twice: since
k is the largest index, the coin Tk will not be in the sequence 1, 2, . . . , j, and
the coin (Tk + Tj) will not be in the sequence 1, 2, . . . , i.

When does this procedure fail? If i = 0, the last weighing is impossible
but also redundant, because it would be asking to weigh the n-gram coin
against itself. If j = 0, the second weighing is likewise impossible and re-
dundant. If k = 0, there is nothing to prove because n = 0 as well. Finally,
if k = 1, the first weighing is impossible because Tk = 1 occurs in 1 . . . k,
but in this case n is at most 3, and that can be solved in fewer than three
weighings anyway.

4 When does One Weighing Suffice?

Let us look at where ones occur in this sequence. We characterize the possible
weighings that could determine a coin by themselves. The determination of
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the numbers n of coins that admit such weighings, i.e., for which a(n) = 1,
is a direct consequence.

4.1 One-Weighing Determinations

Theorem 4.1. The weight of some coin can be confirmed with just one weigh-
ing if and only if all of:

(i) one cup of that weighing contains all the coins with weights from 1 to
some i;

(ii) the other cup contains all the coins with weights from some j to n;

(iii) Either the scale balances, or the cup containing the 1-gram coin is
lighter by one gram; and

(iv) At least one cup contains exactly one coin, or exactly one coin is left
off the scale.

Why can such a weighing be convincing? In general, i will be much
larger than n − j. The only way for so few coins to weigh as much as (or
more than) so many will be for the few to be the heaviest and the many to
be the lightest. We show in the proof that those are exactly the convincing
weighing structures; thereafter, in Section 4.2, we discuss the circumstances
under which such a weighing exists and can therefore determine the weight
of a single coin.

Proof. What does it mean for Baron Münchhausen to convince his audience
of the weight k of some coin, using just one weighing? From the perspective
of the audience, a weighing is a number of coins in one cup, a number of coins
in the other cup, and a number of coins not on the scale, together with the
result the scale shows (one or the other cup heavier, or both the same weight).
For the audience to be convinced of the weight of some particular coin, it
must therefore be the case that all possible arrangements of coin weights
consistent with that data agree on the weight k of the coin in question.

“If” direction. Suppose all the conditions in the theorem statement
are met. Then one cup of the scale contains i coins, and the other n− j + 1
coins. Suppose, for definiteness, that these are the left and right sides of the
scale, respectively. The least that i coins can weigh is Ti. The most that
n − j + 1 coins can weigh is Tn − Tj−1. The audience can compute these
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numbers; and if they are equal, then the audience can conclude that, for the
scale to balance, the left cup must have exactly the coins of weights 1 . . . i,
and the right cup must have exactly the coins of weights j . . . n. Likewise, if
Tn−Tj−1 exceeds Ti by one, the same allocation is the only way for the scale
to indicate that the cup with i coins is lighter.

If either of the sets 1 . . . i or j . . . n is a singleton, that determines the
weight of that coin directly; otherwise, condition (iv) requires there to be
only one coin off the scale, and the weight of that one remaining coin can be
determined by the process of elimination.

“Only if” direction. Our proof strategy is to look for ways to alter a
given arrangement of coin weights so as to change the weight given to the coin
whose weight is being demonstrated; the requirement that all such alterations
are impossible yields the desired constraints on convincing weighings.

First, obviously, the coin whose weight k the Baron is trying to confirm
has to be alone in its group: either alone on some cup or the only coin not
on the scale. After that observation we divide the proof of the theorem into
several cases.

Case 1. The k-gram coin is on a cup and the scale is balanced. Then
by above k is alone on its cup. We want to show two things: k = n, and
the coins on the other cup weigh 1, 2, ..., i grams for some i. For the first
part, observe that if k < n, then the coin with weight k + 1 must not be
on the scale (otherwise it would overbalance coin k). Therefore, we can
substitute coin k + 1 for coin k, and substitute a coin one gram heavier for
the heaviest coin that was on the other cup, and produce thereby a different
weight arrangement with the same observable characteristics but a different
weight for the coin the Baron claims has weight k.

To prove the second part, suppose the contrary. Then it is possible to
substitute a coin 1 gram lighter for one of the coins on the other cup. Now,
if coin k− 1 is not on the scale, we can also substitute k− 1 for k, and again
produce a different arrangement with the same observable characteristics but
a different weight for the coin labeled k. On the other hand, if k − 1 is on
the scale but k − 2 is not, then we can substitute k − 2 for k − 1 and then
k−1 for k and the weighing is again unconvincing. Finally, if both k−1 and
k − 2 are on the scale, and yet they balance k, then k = 3 and the theorem
holds.

Consequently, k = n = 1 + 2 + · · ·+ i = Ti is a triangular number.
Case 2. The k-gram coin is on the lighter cup of the scale. Then: first,

k = 1, because otherwise we could swap k and the 1-gram coin, making the
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light cup lighter and the heavy cup heavier or unaffected; second, the 2-gram
coin is on the heavy cup and is the only coin on the heavy cup, because
otherwise we could swap k with the 2-gram coin and not change the weights
by enough to affect the imbalance; and finally n = 2 because otherwise we
could change the weighing 1 < 2 into 2 < 3.

Thus the theorem holds, and the only example of this case is k = 1, n = 2.
Case 3. The k-gram coin is on the heavier cup of the scale. Then k = n

and the lighter cup consists of some collection of the lightest available coins,
by the same argument as Case 1 (but even easier, because there is no need
to maintain the balance). Furthermore, k must weigh exactly 1 gram more
than the lighter cup, because otherwise, k − 1 is not on the lighter cup and
can be substituted for k, making the weighing unconvincing.

Consequently, k = n = (1 + 2 + · · ·+ i) + 1 = Ti + 1 is one more than a
triangular number.

Case 4. The k-gram coin is not on a cup and the scale is not balanced.
Then, since k must be off the scale by itself, all the other coins must be on
one cup or the other. Furthermore, all coins heavier than k must be on the
heavier cup, because otherwise we could make the lighter cup even lighter by
substituting k for one of those coins. Likewise, all coins lighter than k must
be on the lighter cup, because otherwise we could make the heavier cup even
heavier by substituting k for one of those coins. So the theorem holds; and
furthermore, the cups must again differ in weight by exactly 1 gram, because
otherwise we could swap k with either k − 1 or k + 1 without changing the
weights enough to affect the result on the scale.

Consequently, the weight of the lighter cup is k(k − 1)/2, and the weight
of the heavier cup is k(k − 1)/2 + 1. Thus the total weight of all the coins
is n(n+ 1)/2 = k(k − 1)/2 + k + (k(k − 1)/2 + 1) = k2 + 1. In other words,
case 4 is possible iff n is the index of a triangular number that is one greater
than a square.

Case 5. The k-gram coin is not on a cup and the scale is balanced. This
case is hairier than all the others combined, so we will take it slowly (noting
first that all the coins besides k must be on some cup).

Lemma 4.2. The two coins k − 1 and k − 2 must be on the same cup, if
they exist (that is, if k > 2). Likewise k− 2 and k − 4; k+ 1 and k+ 2; and
k + 2 and k + 4.

Proof. Suppose the two coins k−1 and k−2 are not on the same cup. Then
we can rotate k, k − 1, and k − 2, that is, put k on the cup with k − 1,
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put k − 1 on the cup with k − 2, and take k − 2 off the scale. This makes
both cups heavier by one gram, producing a weighing with the same outward
characteristics as the one we started with, but a different coin off the scale.
The same argument applies to the other three pairs of coins we are interested
in, mutatis mutandis.

Lemma 4.3. The four coins k − 1, k − 2, k − 3 and k − 4 must be on the
same cup if they exist (that is, if k ≥ 5).

Proof. By Lemma 4.2, the three coins k− 1, k− 2, and k− 4 must be on the
same cup. Suppose coin k − 3 is on the other cup. Then we can swap k − 1
with k − 3 and k with k − 4. Each cup becomes lighter by 2 grams without
changing the number of coins present, the balance is maintained, and the
Baron’s audience is not convinced.

Lemma 4.4. If coin k − 4 exists, that is if k ≥ 5, all coins lighter than k
must be on the same cup.

Proof. By Lemma 4.3, the four coins k − 1, k − 2, k − 3 and k − 4 must be
on the same cup. Suppose some lighter coin is on the other cup. Call the
heaviest such coin c. Then, by choice of c, the coin with weight c+1 is on the
same cup as the cluster k−1 . . . k−4, and is distinct from coin k−2. We can
therefore swap c with c+1 and swap k with k− 2. This increases the weight
on both cups by 1 gram without changing how many coins are on each, but
moves k onto the scale. The Baron’s audience is again unconvinced.

Lemma 4.5. Theorem 4.1 is true for k ≥ 5.

Proof. By Lemma 4.4, all coins lighter than k must be on the same cup.
Further, if a coin with weight k + 4 exists, then by the symmetric version of
Lemma 4.4, all coins heavier than k must also be on the same cup. They
must be on the other cup from the coins lighter than k because otherwise
the scale would not balance, and the theorem is true.

If no coin with weight k + 4 exists, that is, if n ≤ k + 3, how can the
theorem be false? All the coins lighter than k must be on one cup, and their
total weight is k(k−1)/2. Further, in order to falsify the theorem, at least one
of the coins heavier than k must also be on that same cup. So the minimum
weight of that cup is now k(k − 1)/2 + k + 1. But we only have at most two
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coins for the other cup, whose total weight is at most k+2+ k+3 = 2k+5.
For the scale to even have a chance of balancing, we must have

k(k − 1)/2 + k + 1 ≤ 2k + 5 ⇔ k2 − 3k − 8 ≤ 0.

Finding the largest root of that quadratic we see that k < 5.
So for k ≥ 5, the collection of all coins lighter than k is heavy enough

that either one needs all the coins heavier than k to balance them, or there
are enough coins heavier than k that the theorem is true by symmetric ap-
plication of Lemma 4.4.

Completion of Case 5. It remains to check the case for k < 5. If n > k+3,
then coin k+4 exists. If so, all the coins heaver than k must be on the same
cup. Furthermore, since k is so small, they will together weigh more than
half the available weight, so the scale will be unbalanceable. So k < 5 and
n ≤ k + 3 ≤ 7.

For lack of any better creativity, we will tackle the remaining portion of
the problem by complete enumeration of the possible cases, except for the
one observation that, to balance the scale with just the coin k off it, the total
weight of the remaining coins, n(n+1)/2−k, must be even. This observation
cuts our remaining work in half. Now to it.

Case 5; Seven Coins: n = 7. Then 5 > k ≥ n− 3 = 4, so k = 4. Then
the weight on each cup must be 12. One of the cups must contain the 7 coin,
and no cup can contain the 4 coin, so the only two weighings the Baron could
try are 7+ 5 = 1+2+3+6, and 7+ 3+2 = 1+5+6. But the first of those
is unconvincing because k + 1 = 5 is not on the same cup as k + 2 = 6, and
the second because it has the same shape as 7 + 3 + 1 = 2 + 4 + 5 (leaving
out the 6-gram coin instead of the asserted 4-gram coin).

Case 5; Six Coins: n = 6. Then 5 > k ≥ n−3 = 3, and n(n+1)/2 = 21
is odd, so k must also be odd. Therefore k = 3, and the weight on each cup
must be 9. The 6-gram coin has to be on a cup and the 3-gram coin is by
presumption out, so the Baron’s only chance is the weighing 6+2+1 = 4+5,
but that does not convince his skeptical audience because it looks too much
like the weighing 1 + 3 + 4 = 6 + 2.

Case 5; Five Coins: n = 5. Then 5 > k ≥ n−3 = 2, and n(n+1)/2 =
15 is odd, so k must also be odd. Therefore k = 3, and the weight on each
cup must be 6. The only way to do that is the weighing 5 + 1 = 2 + 4,
which does not convince the Baron’s audience because it looks too much like
1 + 4 = 2 + 3.
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Case 5; Four Coins: n = 4. Then the only way to balance a scale
using all but one coin is to put two coins on one cup and one on the other.
The only two such weighings that balance are 1 + 2 = 3 and 1 + 3 = 4, but
they leave different coins off the scale.

The remaining cases, n < 4, are even easier. That concludes the proof of
Case 5.

Consequently, by an argument similar to the one in case 4 we can show
that any number n of coins to which case 5 applies must be the index of a
square triangular number.

This concludes the proof of Theorem 4.1.

4.2 The Indices of Ones

While proving the theorem we accumulated descriptions of all possible num-
bers of coins that allow the Baron to confirm a coin in one weighing. We
collect that list here to finish the description of the indices of ones in Baron
Münchhausen’s sequence a(n). The following list corresponds to the five
cases in the proof of Theorem 4.1:

(i) n is a triangular number: n = Ti. Then the weighing 1+2+3+. . .+i =
n proves weight of the n-gram coin. For example, for six coins the
weighing is 1 + 2 + 3 = 6.

(ii) n = 2. The weighing 1 < 2 proves the weight of both coins.

(iii) n is a triangular number plus one: n = Ti + 1. Then the weighing
1 + 2 + 3 + . . . + i < n proves the weight of the n-gram coin. For
example, for seven coins the weighing is 1 + 2 + 3 < 7.

(iv) n is the index of a triangular number that is a square plus one: Tn =
k2+1. Then the weighing 1+2+3+. . .+(k−1) < (k+1)+. . .+n proves
the weight of the k-gram coin. For example, the fourth triangular
number, which is equal to ten, is one greater than a square. Hence
the weighing 1 + 2 < 4 can identify the coin that is not on the cup.
The next number like this is 25, and the corresponding weighing is
1 + 2 + · · ·+ 17 < 19 + 20 + · · ·+ 25.

(v) n is the index of a square triangular number: Tn = k2. Then the
weighing 1+2+3+ . . .+(k−1) = (k+1)+ . . .+n proves the weight of
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the k-gram coin. For example, we know that the 8th triangular number
is 36, which is a square: our original problem corresponds to this case.

The sequence of indices of ones in the sequence a(n) starts as: 1, 2, 3, 4,
6, 7, 8, 10, 11, 15, 16, 21, 22, 25, 28, 29, 36, 37, 45, 46, 49, 55, 56, 66, 67, 78,
79, 91, 92.

4.3 Discussion

If we have four coins, then the same weighing 1 + 2 < 4 identifies two coins:
the coin that weighs three grams and is not on the scale and the coin weighing
four grams that is in a cup. The other case like this is for n = 2. Comparing
the two coins to each other we can identify both of them. It is clear that
there are no other cases like this. Indeed, for the same weighing to identify
two different coins, it must be the n-gram coin on a cup, and the (n−1)-gram
coin off the scale. From here we can see that n cannot be very big.

As usual, we want to give our readers something to think about. We have
given you the list of four sequences that correspond to four cases describing
all the numbers for which the Baron can prove the weight of one coin in
one weighing. Does there exist a number greater than four that belongs to
two of these sequences? In other words, does there exist a total number of
coins such that the Baron can have two different one-weighing proofs for two
different coins?

5 Two Weighings are Always Enough

Our main theorem states that Baron Münchhausen never needs three weigh-
ings, for two are always enough.

Theorem 5.1. a(n) ≤ 2.

6 Notation

In the proofs of the previous theorems and lemmas, we have already seen some
recurring elements: triangular numbers are important; contiguous ranges of
coins are important. Additional common elements will arise in our further
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explorations, so we introduce some notation now to more easily manipulate
them.

As before the coins are numbered according to their weights, and we will
continue to use the number i to denote an i-gram coin on a cup, using round
brackets as before to distinguish a single coin of a weight we need to compute
from two separate coins. For example, (1+2) means the 3-gram coin, whereas
1+2 means the 1-gram and the 2-gram coin.

We will also continue to use the notation Tx to denote the xth triangular
number x(x+ 1)/2.

We introduce the notation [x . . . y] for the set of all consecutive coins
between x and y, inclusive; and we will occasionally construct weighings with
set notation. Inside expressions in square brackets we will not parenthesize
computations: [3 + 4 . . . 11 − 1] is the set of coins weighing from 7 to 10,
inclusive, and does not include the coins 3, 4, 11, or 1.

If A denotes a set of coins, then |A| denotes the total weight of those
coins (not the cardinality of the set).

When representing a weighing as an equality/inequality we will refer to
the left and right sides of the equality/inequality as the left and right cups
of the weighing, respectively.

7 Preliminaries

Before we proceed with the main section of the proof, we will prove two
lemmas that we are going to need, and that will demonstrate the machinery
we will use to prove the main Theorem 5.1.

Lemma 7.1. If n, n− 1, or n− 2 is a sum of two triangular numbers, then
the Baron can demonstrate the weight of the n-gram coin in two weighings.

Proof. This is a direct corollary of the argument used to prove Theorem 3.1.
If n = Ta + Tb, that argument applies exactly. In the other two cases, the
Baron can make judicious use of unbalanced weighings.

If n = Ta + Tb + 1, for a ≤ b, then one of the weighings needs to be
unbalanced, for example

[1 . . . b] = Tb

[1 . . . a] + Tb < n.
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If n = Ta + Tb + 2, then both weighings should be unbalanced:

[1 . . . b] < (Tb + 1)

[1 . . . a] + (Tb + 1) < n.

Since triangular numbers are pretty dense among the small integers, The-
orem 4.1 and Lemma 7.1 account for many small n. This is good, because
the main proof in Section 8 does not go through for small n. In particular,
the reader is invited to verify that the smallest n that does not fall under
the purview of Lemma 7.1 is n = 54; for example by consulting sequence
A020756 in OEIS [3].

The following covers a special case we will encounter in the main proof,
and coincidentally demonstrates the argument we will use in the main proof
that the complicated weighings we will present will, in fact, convince the
Baron’s audience.

Lemma 7.2. If there exists an a such that 2n = Ta + Ta+1, the Baron can
prove the weight of the n-gram coin in two weighings.

Proof. We know that Ta < n < Ta+1 and, in fact, n = Ta +
a+1
2
. Suppose we

can find coins x and y with a + 1 < x < y = x + a+1
2

< n. Then the Baron
can present the following two weighings:

[1 . . . a] + y = x+ n

and
[1 . . . a + 1] + x = y + n.

They will balance by the choice of x and y. Why will they convince the
Baron’s audience?

Let the audience consider the sum of the two weighings. The coins x and
y appear on both sides of the sum, so they do not affect the balance of the
total. Besides them, a coins appeared twice on the left, and one additional
coin appeared once on the left; and this huge pile of stuff was balanced by just
two appearances of a single coin on the right. How is this possible? The least
possible total weight of the left-hand sides (except x and y) occurs if the coins
that appeared twice have weights [1 . . . a], and the coin that appeared once
has weight a+ 1, for a total weight of Ta + Ta+1. The greatest possible total
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weight of the right-hand sides (again excluding x and y) occurs if the solitary
coin on the right weighs n grams. But the known fact that 2n = Ta + Ta+1

guarantees that, even in this extreme case the scale will just barely balance;
so any other set of weights would cause the left cup to overbalance the right
in at least one of the weighings Baron Münchhausen conducts. Therefore,
since, in fact, neither left cup overbalanced its corresponding right cup, the
Baron’s audience is forced to conclude that the solitary coin on the right must
weigh n grams, as was the Baron’s intention. (Coincidentally, this scenario
also proves the weight of the a+ 1 coin.)

Now, when can we find such coins x and y? We can safely take the a+ 2
coin for x. Then the desired y coin will exist if n > a + 2 + a+1

2
, which is

equivalent to Ta > a+2, which holds for a ≥ 3. The last condition translates
into n ≥ 8.

Smaller n are covered by Lemma 7.1.

8 Proof of the Main Theorem

There are two magical steps. First, let a ≤ b ≤ c be such that

Ta + Tb + Tc = n+ Tn. (1)

By the triangular number theorem, proved by Gauss in his diary, [4, 6] such
a decomposition of Tn + n into three triangular numbers is always possible.
We should remark at this point that c > n would imply Tc ≥ Tn+1 > Tn + n
so is impossible; and that c = n would imply Tc = Tn so Ta+Tb = n, allowing
the Baron to proceed by the method in Lemma 7.1. So we can assume c < n.

Second, let us try to represent Tc − n as the sum of some subset S of
weights from the range [a + 1 . . . n − 1]. Now there are three non-magical
steps. We will prove that if such a representation exists, then the Baron can
convince his audience of the weight of the n-gram coin in two weighings, by a
particular method to be described forthwith; then we will take some time to
study the properties of sums of subsets of ranges of integers; and then at the
last we will systematically examine possible choices of a, b, and c, and prove
that the above-mentioned subset S really does exist, except in one case, for
which Lemma 7.2 supplies an alternate method of solution.
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8.1 Step 1: What to do with S

Lemma 8.1. Let a, b, and c satisfy

Ta + Tb + Tc = n+ Tn.

Let S be a subset of [a + 1 . . . n− 1] for which

|S| = Tc − n.

Then there exist two weighings that uniquely identify the n-gram coin.

Proof. Let S̄ denote the complement of S in [a + 1 . . . n − 1]. We want to
make a useful weighing out of the assumption about S, so let us proceed as
follows:

Tc = |S|+ n,

which we rewrite in terms of weights of coins

[1 . . . a] + [a+ 1 . . . c] = S ∩ [a+ 1 . . . c] + S ∩ [c + 1 . . . n− 1] + n,

and cancel coins appearing on both sides to get

[1 . . . a] + S̄ ∩ [a+ 1 . . . c] = S ∩ [c + 1 . . . n− 1] + n. (2)

Observe that (2) now forms a legal weighing; and indeed, let us take it to be
the first weighing.

Now we want to make another weighing that will, together with (2),
demonstrate the weight of the n-gram coin. Let us begin by massaging (1):

Ta + Tb + Tc = n + Tn

Ta + Tb = Tn−1 − Tc + 2n

Ta + Tb + |S̄ ∩ [b+ 1 . . . c]| = |S̄ ∩ [b+ 1 . . . c]|+ |[c+ 1 . . . n− 1]|+ 2n.

Now, converting the last equality into coins and subtracting (2), we get

[1 . . . a] + S ∩ [a+ 1 . . . b] = S̄ ∩ [b+ 1 . . . c] + S̄ ∩ [c+ 1 . . . n− 1] + n. (3)

Again, each coin occurs at most once, so the Baron can legitimately take (3)
as his second weighing.

We have just shown that (2) and (3) represent four sets of coins that
can be weighed against each other in the indicated pattern, and that the
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scale will balance if they are. Now, why do these two weighings uniquely
identify the n-gram coin? Consider which coins appear on which sides of
those two equations. Let L1 and R1 be the left- and right-hand sides of
the first weighing (2), respectively, and likewise L2 and R2 for the second
weighing (3). Also, let O1 and O2 be the sets of coins that do not participate
in (2) and (3), respectively. Then

[1 . . . a] = L1 ∩ L2,

S̄ ∩ [a + 1 . . . b] = L1 ∩ O2,

S ∩ [a + 1 . . . b] = O1 ∩ L2,

S ∩ [b+ 1 . . . c] = O1 ∩O2,

S̄ ∩ [b+ 1 . . . c] = L1 ∩ R2,

S̄ ∩ [c+ 1 . . . n− 1] = O1 ∩R2,

S ∩ [c+ 1 . . . n− 1] = R1 ∩ O2,

n = R1 ∩ R2.

Seeing the two weighings (2) and (3), Baron Münchhausen’s audience rea-
sons analagously to how they did in the proof of Lemma 7.2. They consider
the sum of the two weighings, which tells them

|L1|+ |L2| = |R1|+ |R2|.

They see that some coins, namely L1 ∩ R2, (which the Baron knows to be
S̄ ∩ [b + 1 . . . c]) appeared first on the left and then on the right, so those
coins do not affect the balance of the sum. The audience also sees that

(i) a coins appeared on the left both times (L1 ∩ L2);

(ii) b − a coins appeared on the left once and never on the right ((L1 ∩
O2) ∪ (O1 ∩ L2));

(iii) n− 1− c coins appeared on the right once and never on the left ((R1 ∩
O2) ∪ (O1 ∩ R2)); and

(iv) just one coin appeared on the right both times (R1 ∩ R2).

Now, a and b − a are going to be much bigger than n− c − 1 and 1, so the
audience will be surprised that so many coins can be balanced by so few.
And they will wonder how to minimize the total weight

2|L1 ∩ L2|+ |(L1 ∩ O2) ∪ (O1 ∩ L2)|

17



of the many, and how to maximize the total weight

|(R1 ∩O2) ∪ (O1 ∩ R2)|+ 2|R1 ∩ R2|

of the few. And they will see that to do this, they must

(i) let the coins in L1 ∩ L2 have the weights [1 . . . a], as they occur on the
left twice;

(ii) let the coins in (L1 ∩ O2) ∪ (O1 ∩ L2) have the weights [a + 1 . . . b], as
they occur on the left once;

(iii) let the coins in (R1 ∩O2)∪ (O1 ∩R2) have the weights [c+1 . . . n− 1],
as they occur on the right once; and

(iv) let the sole coin in R1 ∩ R2 have weight n, as it occurs on the right
twice.

And then they will see from (1), which can be rewritten as

Ta + Tb + Tc = Tn + n

Ta + Tb = Tn−1 − Tc + 2n

2|[1 . . . a]|+ |[a+ 1 . . . b]| = |[c+ 1 . . . n− 1]|+ 2n

that even if they minimize the left and maximize the right, the scale will
just barely balance. And then they will know that any other weights than
those would have made the left heavier than the right, and since the scale did
balance, those are the weights that must have been, and they will wonder in
awe at the Baron’s skill in convincing them of the weight of his chosen coin
out of n in only two weighings.

We have established that the existence of a subset S of [a + 1 . . . n − 1]
that adds up to |S| = Tc − n suffices to let the Baron convince his audience
of the weight of the coin labeled n in two weighings. Now, when does such a
subset reliably exist?

8.2 Step 2: Sums of subsets of ranges

To answer this question, let us study the behavior of sums of subsets of
ranges of positive integers in general. The results of this segment probably
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generalize to negative integers and beyond, and are probably published in
many books, but we decided that it is faster to derive them ourselves than
drive to the library.

Suppose we have some range of integers [s . . . t]. What are the possible
sums of its subsets? First, what are the possible sums of subsets of a fixed
size, say k? Well, the smallest sum of k elements of [s . . . t] is of course the
sum of the k smallest elements of [s . . . t]:

s+ (s+ 1) + . . .+ (s+ (k − 1)) = ks + Tk−1 = Ts+k−1 − Ts−1.

The largest sum of k elements of [s . . . t] is of course the sum of the k largest
elements of [s . . . t]:

t + (t− 1) + . . .+ (t− (k − 1)) = kt− Tk−1 = Tt − Tt−k.

What is more, given any subset K of k elements of [s . . . t] that are not the
k largest, we can change one of them for an element one larger that was not
in K, thus producing a subset whose sum is larger by one. Since we can
walk all the way from the k smallest elements to the k largest elements by
increments of one, the possible sums cover the whole range between the least
and the greatest possible values, and we have just proven

Lemma 8.2. The set of possible sums of subsets of size k of a range [s . . . t]
is exactly the range [ks + Tk−1 . . . kt− Tk−1].

Now, what about the overall behavior of subsets of any size? Well, subsets
of size k form a contiguous range, and subsets of size k + 1 also form a
contiguous range. Do those ranges join to form a larger range, or is there a
gap? In other words, is one plus the maximum sum of subsets of size k a
possible sum of subsets of size k+1? This will be true if and only if replacing
the k largest elements of [s . . . t] with the k+1 smallest does not increase the
sum by more than 1, or

kt− Tk−1 + 1 ≥ (k + 1)s+ Tk. (4)

Moreover, if turning the k largest elements into the k+1 smallest elements
does not cause an increase exceeding 1, the same will hold for k + 1, as long
as k is less than the middle point of the segment [s . . . t]: k < t−s

2
. Indeed if

we sum up the inequality (4) with t− k ≥ s+ k + 1, we get

(k + 1)t− Tk + 1 ≥ (k + 2)s+ Tk+1,
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the condition that the next two ranges overlap.
This means that if the k-subset range overlaps the k+1-subset range, then

all larger ranges will also overlap, at least until size t−s
2
. Also, subsets of size

greater than t−s
2

overlap symmetrically to their smaller counterparts, because
the sum of any such subset is just the total sum of all numbers between s
and t minus the sum of the complement of that subset. This demonstrates

Lemma 8.3. If k < (t− s)/2 is such that

kt− Tk−1 + 1 ≥ (k + 1)s+ Tk,

then the possible sums of subsets of sizes [k . . . t− s− k] create a contiguous
range. In other words, it is possible to find subsets of the range [s . . . t] that
sum up to any number between ks+ Tk−1 and (t− s− k)t− Tt−s−k−1.

Considering the possibility that ranges may start overlapping from k = 1,
that is t− T0 + 1 ≥ 2s+ T1, leads us to

Corollary 8.4. If t + 1 ≥ 2s + 1, or, equivalently, s ≤ t/2, the subsets of
the range [s . . . t] can achieve any sum in

[s . . . Tt − Ts].

Considering the possibility that ranges may start overlapping from k = 2,
that is 2t− T1 + 1 ≥ 3s+ T2, leads us to

Corollary 8.5. If 2t ≥ 3s + 3, or, equivalently, s ≤ 2
3
t − 1, the subsets of

the range [s . . . t] can achieve any sum in

[2s+ 1 . . . Tt − Ts+1].

These two facts will prove invaluable to characterizing when Tc−n, from
above, can be achieved as the sum of some set of coins from a given range.

8.3 Step 3: Systematic study of possibilities for a, b,
and c

We are now ready to finish this proof. Recall the setup: The Baron has n
coins; we have made a decomposition into three triangular numbers

n + Tn = Ta + Tb + Tc, a ≤ b ≤ c;
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and we know that if we can find a subset S of [a+ 1 . . . n− 1] for which

Tc − n = |S|,

the Baron can convince his audience of the weight of the n-gram coin in two
weighings. We also know, from the corollaries above, that

(i) If 2a + 3 ≤ n, sums of subsets of [a + 1 . . . n − 1] include the range
[a+ 1 . . . Tn−1 − Ta+1], and

(ii) If 3a+6 ≤ 2n− 2, sums of subsets of [a+1 . . . n− 1] include the range
[2a+ 3 . . . Tn−1 − Ta+2].

Here is the main idea for the remainder of this section, and with it, the
proof: As Ta is the smallest number in our decomposition, we know that
Ta ≤ Tn+n

3
< Tn+1

3
. We can conclude from this that a < n+1

√

3
. Since n+1

√

3

grows slower than 2n
3
, for large n we expect the condition 3a+ 6 ≤ 2n− 2 in

Corollary 8.5 to hold. Then it will suffice to prove that Tc − n falls into the
range [2a + 3 . . . Tn−1 − Ta+2]. In general, the lower bound will be easy; and
for the upper bound we will find that if Tc is large, then Ta will be small, so
this analysis will cover all but a few possibilities for c; but these few will be
extreme enough and few enough to handle directly.

Now to it. Since a < n+1
√

3
,

3a+ 6 < (n + 1)
√
3 + 6.

For n ≥ 37,
(n+ 1)

√
3 + 6 ≤ 2n− 2.

Combining these two we get the desired

3a+ 6 < 2n− 2,

so Corollary 8.5 applies. Subsets of [a + 1 . . . n − 1] can take on all sums in
the range [2a + 3 . . . Tn−1 − Ta+2].

Does Tc − n fall into this range? For the upper bound, we have the
sequence of equivalent inequalities, starting with the desired one

Tc − n ≤ Tn−1 − Ta+2

Ta + Tc + (a + 1) + (a+ 2) ≤ Tn

Ta + Tc + (a+ 1) + (a+ 2) + n ≤ Tn + n = Ta + Tb + Tc

n + 2a+ 3 ≤ Tb.
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On the other hand, if n+ 2a+ 3 ≤ Tb, then

Tc − n ≥ Tb − n ≥ 2a+ 3. (5)

So for n ≥ 37, as long as Tb ≥ n+2a+3, a subset S of [a+1 . . . n−1] can
be found that sums to Tc−n, permitting the Baron to convince his audience
of the weight of the coin labeled n.

When can we guarantee that Tb ≥ n + 2a + 3? We know that a < n+1
√

3
,

so it is enough to guarantee that

Tb ≥ n+
2(n+ 1)√

3
+ 3.

As Tb ≥ Ta, it is enough to guarantee that

Ta + Tb = Tn − Tc + n ≥ 2n+
4(n+ 1)√

3
+ 6.

If c ≤ n−4, then Tn−Tc+n ≥ 5n−6. For n ≥ 37, 5n−6 > 2n+ 4(n+1)
√

3
+6,

so Tc − n does, in fact, fit into the desired range.
It now remains to analyse the cases when c > n−4. As remarked earlier,

c > n is impossible, and c = n implies that n = Ta + Tb, so two weighings
suffice by Lemma 7.1. So we are left with three cases: c = n− 1, c = n− 2
and c = n− 3. For such c, Tc is at least Tn−3, so

Ta + Tb ≤ 2n+ (n− 1) + (n− 2) = 4n− 3.

Therefore Ta ≤ 2n − 3
2
. For n ≥ 21, this implies 2a + 3 ≤ n. This fact

allows us to use Corollary 8.4, meaning that we have full use of the range
[a+ 1 . . . Tn−1 − Ta+1].

Does Tc − n fall into this range? For n ≥ 21, the lower bound follows
from

Tc − n ≥ Tn−3 − n ≫ n > a+ 1.

We prove the upper bound case by case.
Case 1. c = n− 3. We can rearrange the upper bound condition

Tn−3 − n = Tc − n ≤ Tn−1 − Ta+1

to
Ta + a+ 1 ≤ n+ (n− 1) + (n− 2) = 3n− 3. (6)
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For n this large, 2a+ 3 ≤ n generously implies

a + 1 ≤ n− 3

2
,

which, together with the known Ta ≤ 2n− 3
2
, implies (6), so S exists and the

Baron succeeds.
Case 2. c = n− 2. Then Ta + Tb = 3n− 1; therefore Ta ≤ 3n−1

2
. For the

upper bound, we want

Tn−2 − n = Tc − n ≤ Tn−1 − Ta+1,

which rearranges to
Ta + a+ 1 ≤ n+ (n− 1).

Since we know Ta ≤ 3n−1
2

, it suffices that

a + 1 ≤ n− 1

2
,

which is mercifully equivalent to the already established condition 2a+3 ≤ n.
Therefore, the desired subset S exists and the Baron succeeds.

Case 3. c = n− 1. Then Ta + Tb = 2n; therefore Ta ≤ n. If b = a, then
Ta = n and the Baron succeeds in one weighing. If b = a+1, then the Baron
succeeds in two weighings by Lemma 7.2.

Now let us assume that b ≥ a+2. Therefore, Tb ≥ Ta+2 > Ta + (a+ 1)+
(a+ 1). Therefore

2n = Ta + Tb > 2(Ta + (a+ 1))

Ta+1 < n

0 < n− Ta+1

Tc < n + Tn−1 − Ta+1

Tc − n < Tn−1 − Ta+1,

so Tc−n fits in the desired range, the desired subset S exists, and the Baron
succeeds.

The argument above proves that the Baron can convince his audience of
the weight of the n-gram coin among n coins for n ≥ 37. The theorem is
completed by noting that Lemma 7.1 covers all smaller n.
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9 Discussion

Is it surprising that the answer is two? That no matter how many coins there
are, Baron Münchhausen can always prove the weight of one of them in just
two weighings on the scale? It surprised us and it surprised most people we
gave this puzzle to. At first, everyone expects that this sequence should tend
to infinity, or at least grow without bound.

So we were most intrigued when we proved Theorem 3.1 and discovered
that the problem always has a simple solution in three weighings. On reflec-
tion, however, maybe that discovery should have been less of a surprise. In
standard coin-weighing puzzles, the person constructing the weighings is try-
ing to find something out; so they are limited if nothing else by information-
theoretic considerations, and as the number of coins involved increases, the
problem usually becomes unequivocally more difficult. In this puzzle, how-
ever, Baron Münchhausen has complete information. So on the one hand, as
the number of coins increases, the audience knows less and the Baron’s task
becomes more difficult; but on the other hand, the available resources for
constructing interesting weighings also grow. In this case, it turns out that
these forces balance to produce a bounded sequence.

In fact, demonstrating the weight of one coin among n in two weighings
is easy. Think about what the Baron actually needs to do to satisfy the
conditions outlined in the beginning of the proof, in Section 8. He must find
some decomposition of n + Tn into three triangular numbers, and find some
subset of a certain collection of his coins that adds up to some number. The
proof is long and hairy because we are trying to prove that this subset always
exists, but the vast majority of the time this is trivial. How many ways are
there to pick a subset of integers from fifty to a hundred, so that their sum
will be three thousand? Or three thousand one? Gazillions!1 If the range
one has to work with is reasonably large, and the target sum is comfortably
between zero and the total sum of all the integers in one’s range, then of
course one can find a subset, or a hundred subsets.

Even more, any number n generally has many decompositions into a sum
of three triangular numbers—on the order of the square root of n [5]. The
proof in Section 8 is hairy also because we were proving that an arbitrary
decomposition of n + Tn into three triangular numbers leads to a solution,
but in practice the Baron has the freedom to pick and choose among a great

1Yes, “gazillions” is a technical term in advanced combinatorics.
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number of possible decompositions.
The ease of proving one coin in two weighings suggests two future direc-

tions. One can explore how many ways there are for Baron Münchhausen to
prove himself right. One can also explore harder tasks that can be asked of
him.

For the outermost example, we can ask the Baron to prove the weight of all
the given coins. For n = 6 this task will match the following puzzle, authored
by Sergey Tokarev [9], that appeared at the last round of the Moscow Math
Olympiad in 1991:

You have 6 coins weighing 1, 2, 3, 4, 5 and 6 grams that look the
same, except for their labels. The number (1, 2, 3, 4, 5, 6) on the
top of each coin should correspond to its weight. How can you
determine whether all the numbers are correct, using the balance
scale only twice?

This task is clearly harder, and indeed this sequence does tend to infinity:
If the total number of coins is n, then the needed number of weighings is
always greater than log3 n [7]. And again, we give it as homework for the
reader to prove this lower bound as well as the upper bound of n−1 weighings.

There is also a huge spectrum of possible intermediate tasks. For example,
how many coins can the Baron show at once with at most two weighings?
What is the smallest number of weighings the Baron needs to specify two
coins? Or, given the total number of coins, how many weighings does the
Baron need to show the weight of a particular coin? What if the audience
can choose which coin’s weight the Baron must prove? Which of these tasks
can be done in a fixed maximum number of weighings, and which can not?
What asymptotic behaviors of the number of needed weighings occur? What
happens if we start using different families of sets of available coins, not just
1 . . . n? There is plenty to be curious about!
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