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A great number of articles widen known scientific results (theorems, inequalities, 
math/physics/chemical etc. propositions, formulas), and this is due to a simple procedure, 
of which it is good to say a few words: 

Let suppose that we want to generalizes a known mathematical proposition P(a) , 
where a  is a constant, to the proposition P(n) , where n  is a variable which belongs to 
subset of N . 

To prove that P  is true for n  by recurrence means the following: the first step is 
trivial, since it is about the known result P(a)  (and thus it was already verified before by 
other mathematicians!). To pass from P(n)  to P(n +1) , one uses too P(a) : therefore one 
widens a proposition by using the proposition itself, in other words the found 
generalization will be paradoxically proved with the help of the particular case from 
which one started!  

We present below the generalizations of Hölder, of Minkovski, and respectively 
Tchebychev inequalities, and also of the Theorem of Menelaus in geometry. 

 
 

1. A GENERALIZATION OF THE INEQUALITY OF HÖLDER 
 

One generalizes the inequality of Hödler thanks to a reasoning by recurrence. As 
particular cases, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz, and some interesting applications. 
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Proof: 
For m = 2 one obtains exactly the inequality of Hödler, which is true. One 

supposes that the inequality is true for the values which are strictly smaller than a 
certain m .  

Then:, 
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Let us note pt1 = pm−1  and pt2 = pm . Then  
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+ + + =  is true and one 

has pj > 1  for 1≤ j ≤ m  and it results the inequality from the theorem. 
 
Note: If one poses pj = m  for 1≤ j ≤ m  and if one raises to the power m  this 

inequality, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz: 
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Application:  
Let a1,a2 ,b1,b2 ,c1,c2 be positive real numbers. 
Show that: 

(a1b1c1 + a2b2c2 )6 ≤ 8(a1
6 + a2

6 )(b1
6 + b2

6 )(c1
6 + c2

6 )  
 
 Solution: 

We will use the previous theorem. Let us choose p1 = 2 ,  p2 = 3 ,  p3 = 6 ; we 
will obtain the following: 
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or more: 
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 it results the exercise which was proposed. 

 
 

2. A GENERALIZATION OF THE INEQUALITY OF MINKOWSKI 
 

Theorem : If p  is a real number ≥ 1 and ( )k
ia ∈R+ with i ∈{1,2,...,n}  and  

k ∈{1,2,...,m} , then: 
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 Demonstration by recurrence on m∈N*. 
 First of all one shows that: 
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is true for m = 1 . 

(The case m = 2  precisely constitutes the inequality of Minkowski, which 
is naturally true!). 

Let us suppose that the inequality is true for all the values less or equal to  
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3. A GENERALIZATION OF AN INEQUALITY OF TCHEBYCHEV 
 
 Statement: If  ai
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 Demonstration by recurrence on m . 
 

 Case m = 1  is obvious:  
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 In the case m = 2 , this is the inequality of Tchebychev itself:  
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One supposes that the inequality is true for all the values smaller or equal to m . It 
is necessary to prove for the rang m +1 : 
 

   
1

n
ai

(k )

k=1

m+1

∏
i=1

n

∑ =
1

n
ai

(k )

k=1

m

∏⎛⎝⎜
⎞
⎠⎟i=1

n

∑ ⋅ai
(m+1) . 

 

This is  ≥
1

n
ai

(k )

k=1

m

∏
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
⋅

1

n
ai

(m+1)

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
≥

1

nm
ai

(k )

i=1

n

∑
k=1

m

∏⎛
⎝⎜

⎞
⎠⎟
⋅

1

n
ai

(m+1)

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

 

 

and this is exactly  
1

nm+1 ai
(k )

i=1

n

∑
k=1

m+1

∏     (Quod Erat Demonstrandum).

 
                                               

                                                                               

 
 



5 
 

 

 

4.  A GENERALIZATION OF THE THEOREM OF MENELAUS  

 

This generalization of the Theorem of Menelaus from a triangle to a polygon with n sides is 
proven by a self-recurrent method which uses the induction procedure and the Theorem of 
Menelaus itself. 
 

The Theorem of Menelaus for a Triangle is the following: 

If a line (d) intersects the triangle Δ A1A2A3 sides A1A2, A2A3, and A3A1 respectively in the points 
M1, M2, M3, then we have the following equality: 

1 1 2 2 3 3

1 2 2 3 3 1
1M A M A M A

M A M A M A
⋅ ⋅ =  

where by M1A1 we understand the (positive) length of the segment of line or the distance 
between M1 and A1; similarly for all other segments of lines. 

Let’s generalize the Theorem of Menelaus for any n-gon (a polygon with n sides), where n ≥ 3, 
using our Recurrence Method for Generalizations, which consists in doing an induction and in 
using the Theorem of Menelaus itself. 

For n = 3 the theorem is true, already proven by Menelaus. 

The Theorem of Menelaus for a Quadrilateral. 

Let’s prove it for n = 4, which will inspire us to do the proof for any n. 

Suppose a line (d) intersects the quadrilateral A1A2A3A4 sides A1A2, A2A3, A3A4, and A4A1 

respectively in the points M1, M2, M3, and M4, while its diagonal A2A4 into the point M [see     
Fig. 1 below]. 

We split the quadrilateral A1A2A3A4 into two disjoint triangles (3-gons) Δ A1A2A4 and Δ A4A2A3, 
and we apply the Theorem of Menelaus in each of them, respectively getting the following two 
equalities: 

1 1 2 4 4

1 2 4 4 1
1M A MA M A

M A MA M A
⋅ ⋅ =  

and  
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4 2 2 3 3

2 2 3 3 4
1.MA M A M A

MA M A M A
⋅ ⋅ =  

Now, we multiply these last two relationships and we obtain the Theorem of Menelaus for n = 4 
(a quadrilateral):  

1 1 2 2 3 3 4 4

1 2 2 3 4 4 1
1.

3
M A M A M A M A
M A M A M A M A

⋅ ⋅ ⋅ =
 

                                                                                                                    

                                                                       A4

 

                                  A1 

          M4                                                                  A3 

                                   M1       M                   M2          M3      

                                                                                                   (d) 

                                         A2                                 

                                      Fig. 1 

 

Let’s suppose by induction upon k ≥ 3 that the Theorem of Menelaus is true for any k-gon with  3 
≤ k ≤ n -1, and we need to prove it is also true for k = n. 

Suppose a line (d) intersects the n-gon A1A2…An sides AiAi+1 in the points Mi, while its diagonal 
A2An into the point M {of course by AnAn+1 one understands AnA1} – see Fig. 2. 

We consider the n-gon A1A2…An-1An and we split it similarly as in the case of quadrilaterals in a 
3-gon Δ A1A2An and an (n-1)-gon AnA2A3…An-1 and we can respectively apply the Theorem of 
Menelaus according to our previously hypothesis of induction in each of them, and we 
respectively get: 

1 1 2

1 2 1
1M A MA MnAn

M A MAn MnA
⋅ ⋅ =

 

and  

2 2 2 2 1 1

2 2 3 2 1 1
... 1n n n n

n n n n
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− − −
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whence, by multiplying the last two equalities, we get  
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the Theorem of Menelaus for any n-gon: 
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                                                                    An      
 

                                  A1                                                        An-1 

          Mn                                                                  A3 

                                   M1       M                   M2                

                                                                                                   (d) 

                                         A2                                 

                                      Fig. 2 

Conclusion. 

We hope the reader will find useful this self-recurrence method in order to generalize known 
scientific results by means of themselves! 

{Translated from French by the Author.} 
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