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FEATURES OF A HIGH SCHOOL OLYMPIAD PROBLEM

LAWRENCE SMOLINSKY

Abstract. This paper is a supplement to a talk for mathematics teachers given at the
2016 LSU Mathematics Contest for High School Students. The paper covers more details
and aspects than could be covered in the talk.

We start with an interesting problem from the 2009 Iberoamerican Math Olympiad con-
cerning a particular sequence. We include a solution to the problem, but also relate it to
several areas of mathematics. This problem demonstrates the countability of the rational
numbers with a direct one-to-one correspondence. The problem also shows the one-to-one
correspondence of finite continued fractions and rational numbers. The subsequence of odd
indexed terms was constructed by Johannes Kepler and is discussed. We also show that the
indices have an extension to the 2-adic integers giving a one-to-one correspondence between
the positive real numbers and the 2-adic integers. Everything but the extension to the 2-adic
integers is known to have appeared elsewhere.

1. The Problem

Let us start with problem five from the 2009 Iberoamerican Math Olympiad.

Problem 1.1. The sequence {an}∞n=1 satisfies a1 = 1 and for n ≥ 1,

a2n = an + 1; a2n+1 =
1

a2n
.

Prove that every positive rational number occurs in the sequence exactly once.

Let’s write out the beginning of the sequence:
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2. Countable and uncountable.

For a finite set we can determine how large it is by counting the number of elements. One
can view counting the elements in a finite set as putting them in one-to-one correspondence
with a finite counting set. For example, {♣,♦,♠,♥} ↔ {1, 2, 3, 4}, and we can say the two
sets are size or cardinality 4. We can also compare infinite sets using one-to-one correspon-
dences. The measure of the size of a set in this sense is called cardinality, and two sets have
the same cardinality if they can be put into one-to-one correspondence.
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2 L. Smolinsky

Let us check a few infinite sets that are of different sizes by measures other than cardinality
(e.g., different length), and look to be very different at first glance. Start with two intervals
in R where one is 10 times longer. Are the intervals [0, 1] and [0, 10] the same cardinality?
Yes, these are the same cardinality, and it is demonstrated by the one-to-one correspondence
x ↔ 10x.

Next consider two intervals: One of finite length and one of infinite length. Are these
intervals of different cardinality? Let us take [0, 1) and [0,∞). These sets are in fact the
same cardinality. A one-to-one correspondence to demonstrate this equality is x ↔ tan πx

2
.

Now compare an interval and the natural numbers. Do N and the interval [0, 1] have
the same cardinality? These cannot be put into a one-to-one correspondence. To show
that there does not exist any one-to-one correspondence, we show that in any one-to-one
correspondence between N and a subset of S ⊂ [0, 1], the subset is not all of [0, 1]. The
argument is famous and is known as Cantor’s diagonalization argument.

Suppose you have any correspondence between N and a subset of [0, 1]. We can show
that not every number in [0, 1] is in the correspondence and therefore it is not a one-to-one
correspondence between N and [0, 1].

First note that every number in [0, 1] can be written as a decimal 0.d1d2d3 · · · , e.g., 1 =
0.999 · · · = 0.9, 1

2
= 0.50 or 0.49, 1

3
= 0.3. A correspondence between N and a subset of [0, 1]

has the form

1 ↔ 0.a11a12a13a14a15 · · · a1n−1a1na1n+1 · · ·
2 ↔ 0.a21a22a23a24a25 · · · a2n−1a2na2n+1 · · ·
3 ↔ 0.a31a32a33a34a35 · · · a3n−1a3na3n+1 · · ·
...

...

n ↔ 0.an1an2an3an4an5 · · · ann−1annann+1 · · ·
...

...

We can now produce a number in [0, 1] that is not in the correspondence. For k ∈ N, let

dk =

{
3 if ak k = 4

4 if ak k 6= 4

The number r = 0.d1d2d3d4 · · · is not in the correspondence. Note that r has only one
representation as an infinite decimal since the digits do involve 9’s or 0’s. It is not the first
number in the correspondence since r and the first number have different first digits, i.e.,
d1 6= a11. Similarly r is not the second number since d2 6= a22. This pattern holds in general.
The digits along the diagonal of the list distinguish the numbers in the list from r. In other
words r is not the nth number for any n since dn 6= ann.

The above argument shows that any list on the right hand side is not all [0, 1] and the set
of numbers [0, 1] is not the same size as N. The cardinality of N is referred to as countably
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infinite and an infinite set (like [0, 1]) that cannot be put into one-to-one correspondence
with N is called uncountable.

What about the rational numbers?

3. Are the rational numbers countable or uncountable?

One property the rational numbers possess is that between any two real numbers there
are infinitely many rational numbers! It is called being dense in the real line and the real
numbers also possess this property. When faced with the question of whether the rational
numbers are countable like N or uncountable like R, many people intuit that the rational
numbers are uncountable because they are dense like the real numbers. This is false.

The rational numbers are countable. In fact, if a student successfully answers Prob-
lem (1.1), then they will have proved that there is a one-to-one correspondence between the
positive rational numbers and N. The correspondence is simply:

n ↔ an.

It is now easy to construct a one-to-one correspondence between the rational numbers and
N. Let s1 = 0, s2n = an, s2n+1 = −an and the correspondence is:

n ↔ sn.

4. Properties of the sequence

Some properties of the sequence that will be required in subsequent sections are discussed.
First recall the recursion relations from Problem (1.1):

a1 = 1, a2n = an + 1, and a2n+1 =
1

a2n
.

From the second equality we note that a2mk = ak +m and in particular a2m = m+ 1.
Next we observe that the sequence in Problem (1.1) has the following properties:

Properties 4.1.

a1 = 1(1)

a2k = ak + 1 > 1(2)

a2k+1 =
1

a2k
< 1 for k > 0(3)

The even indexed sequence elements are the positive rational numbers greater than 1 and
the odd indexed rational numbers are the positive rational numbers less than or equal to 1.
In particular

n ↔ a2n+1

gives a one-to-one correspondence between the rational numbers in (0, 1) and N, or in
other words, the rational numbers in (0, 1) as the subsequence of odd indices starting at
3: a3, a5, a7, · · · .
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5. A sequence of Johannes Kepler

The subsequence a3, a5, a7, · · · , which enumerates the rational numbers strictly between 0
and 1, was essentially given by Johannes Kepler in Harmonices Mundi, Book III. A transla-
tion is by Aiton, Duncan and Field (see [1]) and is excerpted at the website [2]. While Kepler
did not describe a sequence, he described the elements in an ordered manner by giving a
tree structure. His tree structure relates to the subsequence we defined as follows:

a3

a5

a9

a17 a19

a11

a21 a23

a7

a13

a25 a27

a15

a29 a31

Kepler’s rules to propagate his tree are

x
y

x
x+y

y
x+y

or in terms of the sequence the propagation is a2n+1

a2(2n)+1 a2(2n+1)+1

It is a short exercise with the two recursion relations in Problem (1.1) to show that if

a2n+1 =
x

y
, then a2(2n)+1 =

1
1

a2n+1
+ 1

=
x

x+ y
and a2(2n+1)+1 =

1

a2n+1 + 1
=

y

x+ y
.

Another interesting feature of Kepler’s tree is that the subsequence obtained by moving
down the right-hand edge of the tree are all ratios of successive Fibonacci numbers.

6. A solution to Problem (1.1).

The solution presented is very similar to Alexander Remorov’s solution [3]. We first
show that the sequence includes all positive rational numbers. Use induction on k with the

induction hypothesis: if
p

q
with p, q ∈ N has p+ q ≤ k, then

p

q
occurs in the sequence.

The induction hypothesis holds for k = 2 since a1 = 1
1
= 1. Now suppose

r

s
is a rational

number with r + s = k + 1, and the induction hypothesis holds for k. Note that r 6= s by

Properties (4.1) 2 and 3. Consider the case r > s. By the induction hypothesis,
r − s

s
= am

for some m. Then
r

s
= 1 +

r − s

s
= a2m. Next, consider the case s > r. By the first

case, there is an m with am = r/s. Therefore, by the recursion relation in Problem (1.1),
am+1 = s/r.

We next show that there are no repetitions in the sequence so that the sequence has distinct
terms. Suppose the smallest index representing a number that occurs more than once is m
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and am = an. Note that m > 1 by Properties (4.1) 2 and 3. Also note that by Properties
(4.1) 2 and 3, m and n are the same parity. If m and n are even, then am/2 = an/2, by the
recursion in Problem (1.1). This contradicts m being minimum. Similarly, if m and n are
odd, then am−1 = an−1. Again, it follows by the recursion in Problem (1.1) that contradicts
m being minimum.

7. Continued fraction representation of elements and base 2
representation of indices

We can read the sequence entry for an from the representation of n, the index of the
sequence entry. (A similar treatment is given in [5]). First write n in base two as

n = 2m0 + 2m1 + 2m2 + · · ·+ 2mk

with m0 a nonnegative integer, the other mi’s positive integers, and mi < mi+1. Next define
n0 = m0 and ni = mi −mi−1 for i = 1, · · · , k. We may then write

(4) n = 2n0 + 2n0+n1 + 2n0+n1+n2 + 2n0+n1+n2+n3 + · · ·+ 2n0+n1+n2+n3+···+nk ,

which we may express as

(5) n = 2n0(1 + 2n1(1 + 2n2(1 + 2n3(· · · 2nk−1(1 + 2nk) · · · ))))
where the intergers ni satisfy n0 ≥ 0 and ni > 0 for i = 1, · · · , k.

To unravel the value of an, we can use the expression for n in Eq (5) and the recursion
relations in Problem (1.1). Start from the inside and work out:

a1+2nk =
1

a2nk

=
1

1 + nk

a1+2nk−1 (1+2nk ) =
1

nk−1 +
1

1+nk

...

a2n0 (1+2n1 (1+2n2 (1+2n3 (···2nk−1 (1+2nk )··· )))) = n0 +
1

n1 +
1

n2+
1

... 1

nk−1+
1

1+nk

This final expression for an as a long compound fraction

(6) an = n0 +
1

n1 +
1

n2+
1

... 1

nk−1+
1

1+n
k

is called a continued fraction.
The ni can be obtained from counting the number of zeros between the base two digits

of n as can be seen in Eq (4). Therefore, from the base two representation of the index n,
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one can read off the sequence value an by counting the number of zeros between ones or the
decimal point. The instructions are as follows:

Instructions 7.1.

(1) n0 is the number of zeros between the decimal point and the first one (with perhaps
n0 being 0).

(2) nm-1 is the number of zeros between the m-th one and the next one for 0 < m < k.
(3) nk-2 is the number of zeros between the k − 1-st one and the last (k-th) one.

Note the last nested denominator of the partial fraction is 1 + nk. For example, if 600 =
1001011000.0, so

a600 = 3 +
1

1 + 1
2+ 1

4

.

Furthermore for any n > 600 that has a base two representation agreeing with the start of
600, i.e., · · · 1011000, an has the same beginning as a continued fraction as a600 (up through
nk−1 = 2),

a600 = 3 +
1

1 + 1
2+ 1

...

.

If you combine the observation that an has the form given in Eq (6) with Problem (1.1),
then you see that each positive rational number has a unique representation as a continued
fraction of the form given in Eq (6), i.e., with for some whole number k, n0 ≥ 0, and ni > 0
for i = 1, · · · , k.1. It follows as a simple exercise that

Theorem 7.2. For every rational number q there are unique choices of z an integer, k a
whole number, and if k > 0, natural numbers ni for i = 1, · · · , k so that q may be uniquely
represented as

z +
1

n1 +
1

n2+
1

... 1

nk−1+
1

1+nk

.

Finally, note that if you start with a positive rational number q and write down its contin-
ued fraction representation, then you have a recipe for finding the place of q in the sequence,
i.e., for finding the n with q = an. The recipe for expressing q as a continued fraction follows
from an algorithm that is thought to go back to the Pythagoreans and is called the Euclidean
Algorithm as it appeared in Euclid’s Elements.

1In some presentations, nk is allowed to be zero and then there may be two representations
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8. Extension to positive real continued fractions and a sequence indexed
by the 2-adic integers.

We move beyond Problem (1.1) in this section to an extension of the sequence. We still
write of this extension as a sequence even though it is more properly a function.

We have already seen and proved that there is a one-to-one correspondence between the
rational numbers and the continued fractions. These continued fractions had finitely many
quotients terminating with nk + 1. We will call these finite continued fractions. The notion
of continued fractions may be extended to infinite expressions:

(7) z +
1

n1 +
1

n2+
1

n3+
1

n4+
1

...

.

for z ∈ Z and ni ∈ N.

Theorem 8.1. There is a one-to-one correspondence between the infinite continued fractions,
i.e., expression of the form given in (7), and the irrational numbers. The continued fraction
(7) is nonnegative if and only if z ≥ 0.

An infinite expression of the form (7) must be interpreted using the theory of limits just as
infinite decimals must be interpreted using limits. One may terminate the infinite continued
fraction (7) at a finite level, say at nm, to get the rational number cm+1. The cm’s are called
convergents of the continued fraction. The infinite continued fraction (7) is viewed as a limit
of its sequence of convergents:

(8) z, z +
1

n1
, z +

1

n1 +
1
n2

, z +
1

n1 +
1

n2+
1

n3

, z +
1

n1 +
1

n2+
1

n3+
1
n4

· · · .

The limit limm→∞ cm always exists and is an irrational number, r. The odd subsequence of
convergents {c2n−1}∞n=1 monotonically increases to r, and the even subsequence of convergents
{c2n}∞n=1 monotonically decreases to r. The details are beyond this talk but reader may find
them in many sources such as [4].

It is interesting to note that continued fraction representation of a number may be more
easily accessed or understood than a decimal representation. For example, while both

√
2 and

e have infinite decimal representations that are not completely known, the continued fraction
representations are known. Square roots all have periodic continued fraction representations
and

√
2 = 1 +

1

2 + 1
2+ 1

2+ 1

2+ 1

...
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or ni = 2 for i = 1, 2, 3, · · · . The representation of e was first published in 1744 by Euler:

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

...

or n0 = 2 and for i > 0, ni =

{
2k if i = 3k − 1

1 otherwise
. For a proof see [6].

We now turn to the second aspect needed to extend the sequence. The index set of the
sequence used to obtain the rational numbers are the natural numbers. Representing the
index n as a base two numeral allows us to directly produce continued fraction representation
of an. We extend the index set to a number system called the 2-adic integers to produce a
type of 2-adic sequence that yields the positive real numbers without repetition.

Infinite expressions like infinite continued fractions or infinite decimals are given meaning
using the notion of limits. For example the infinite decimal 0.333333333 · · · is given meaning
as the limit of the sequence 0.3, 0.33, 0.333, 0.3333, etc. The later terms are close together
because their difference is small in the usual absolute value or norm. The digits farther to
the right of the decimal point are in smaller place values than those to the left in terms of
the norm.

There are number systems introduced (in the late 1890’s by Kurt Hensel) that extend the
counting numbers using norms motivated by number theory. For each prime number p, there
is a number system called the p-adics. These p-adic numbers turn out to be very important
in mathematics. For example, Wiles’s proof of Fermat’s last theorem uses p-adic numbers.
We consider only the 2-adics. Every integer can be written as a power of two times an odd
number, n = 2km with m odd. The 2-adic norm is |n|2 = |2km|2 = 1/2k. If we right counting
numbers in base two, then the digits farther to the left are in the smaller place value in terms
of the 2-adic norm. The 2-adic integer numerals are base two numerals that extend infinitely

to the left! A 2-adic integer is of the form z =
∑

2mi for mi an increasing finite or infinite

sequence of counting numbers. An example of is · · · 01010101010 =
∑

∞

m=1 2
2m−1 = −2/3,

which is a 2-adic integer. (You can see it is -2/3 by dividing by 2, multiplying by 3, and
adding 1 to get zero).

We can extend the index set of the sequence in Problem (1.1) infinite 2-adic numerals by
using part 1 and 2 of Instructions (7.1). So for example,

a−2/3 = a ···01010101010 = 1 +
1

2 + 1
2+ 1

2+ 1

2+ 1

2+ 1

2+ 1

...

,
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which happens to be
√
2. In general, following Instructions (7.1) means expressing a 2-adic

integer as

(9) n =

∞∑

m=0

2
∑

m

i=0
ni

then the instructions yield

(10) an = n0 +
1

n1 +
1

n2+
1

n3+
1

n4+
1

n5+
1

...

This sets up an one-to-one correspondence between the 2-adic integers and the positive
real numbers by Theorems (7.2) and (8.1).

We close by noting that although this map is not continuous, there is a consistency result.
Every 2-adic integer is a limit of counting numbers specified by the numeral representation
since

lim
m→∞

m∑

i=0

2mi =
∞∑

i=0

2mi.

The consistency result is

Theorem 8.2. Let z =
∑

∞

k=0 2
∑

k

i=0 ni with ni ∈ Z, n0 ≥ 0, and ni > 0 for i > 0. Then

(11) lim
m→∞

a∑
m

k=0 2
∑

k
i=0

ni
= n0 +

1

n1 +
1

n2+
1

n3+
1

n4+
1

n5+
1

...

= az

Proof. To show Eq.(11), we need to refer to the theory of continued fractions. The continued
fraction in Eq.(11) has a real limit r. The k-th convergent is obtained by retaining truncating
the continued fraction after the k-th denominator, i.e., in Eq.(11) dropping, or setting to
zero,ni for i > k. The even convergents form an increasing sequence with limit az and the
odd convergents form a decreasing sequence with limit az.

Now, a∑
m

k=0
2
∑

k
i=0

ni
is between its (m− 1)-st and (m− 2)-nd convergent, but the (m− 1)-

st and (m − 2)-nd convergents of a∑
m

k=0
2
∑

k
i=0

ni
and az are the same. Eq.(11) follows since

a∑
m

k=0
2
∑

k
i=0

ni
is sandwiched between a monotonically increasing and decreasing sequences

converging to az. �

Example 8.3. Consider right-hand edge of Kepler’s tree in Section (5). This edge consists
of ratios of successive Fibonacci numbers. In terms of the sequence from Problem (1.1), the
edge is

a3, a7, a15, · · · , a2n−1, · · · .
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If we write the indices in base two, it is

(12) a11, a111, a1111, · · · , a1 · · ·1
︸ ︷︷ ︸
n one’s

, · · · .

By Theorem (8.2),
lim
n→∞

a2n−1 = lim
n→∞

a1···1 = a···111

and

(13) a···111 =
1

1 + 1
1+ 1

1+ 1

1+ 1

...

by the instructions. This continued fraction is the reciprocal of the golden ratio or

√
5− 1

2
.

The sequence of the right-hand edge of the tree, Eq. (12), is the sequence of convergents for
the continued fraction (13).

Acknowledgements: The author is grateful to Andrew McDaniel for reviewing this man-
uscript.
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