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An axiomatic look at a windmill

Victor Pambuccian

Abstract. We present the problem stated in intuitive language as prob-
lem 2 at the 52nd International Mathematical Olympiad as a formal
statement, and prove that it is valid in ordered regular incidence planes,
the weakest ordered geometry whose models can be embedded in pro-
jective ordered planes.
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1. Introduction

Proposed by Geoffrey Smith of the University of Bath, the second problem
on the first day of the 52nd IMO, held in Amsterdam, reads as follows (see
[2] for the statements and proofs of all problems):

Let S be a finite set of at least two points in the plane. Assume that no
three points of S are collinear. A windmill is a process that starts with a line
l going through a single point P ∈ S. The line rotates clockwise about the
pivot P until the first time that the line meets some other point belonging
to S. This point, Q, takes over as the new pivot, and the line now rotates
clockwise about Q, until it next meets a point of S. This process continues
indefinitely, with the pivot always being a point from S.
Show that we can choose a point P in and a line l going through P such that
the resulting windmill uses each point of S as a pivot infinitely many times.

As stated, the problem appears on a first reading to be describing a process
in Euclidean geometry or at any rate a geometry with a metric, as it appears
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2 Victor Pambuccian

to require the existence of rotations, without really belonging to Euclidean
geometry proper, given its strong combinatorial flavor.

The aim of this note is to state it as a theorem of ordered regular incidence
planes.

We will proceed as follows: First, we will provide an axiom system for planar
ordered domains (without the lower-dimension axiom), then we will state
the windmill problem inside that formalism, and provide a proof for it. Next
we will introduce axiomatically ordered regular incidence planes, state the
windmill problem in that formalism, in which it turns out to be a universal
statement (i.e. it does not contain any existential quantifier), and finally
provide the rationale for the validity of the windmill problem inside that
axiom system.

2. The axiomatic framework for planar ordered domains

The axiomatic framework is that of a very general two-dimensional theory
of betweenness, the models of which will be referred to as planar ordered

domains (see also [5]), axiomatized in terms of points as individual variables
and the strict betweenness ternary predicate Z, with Z(abc) to be read as
‘b lies between a and c’ (and the order is strict, i. e. b is different from a
and c), the axiom system consisting of the axioms A1-A5 axiomatizing L,
the universal theory of linear order (we omit throughout the paper universal
quantifiers in universal sentences):

A 1. Z(abc) → Z(cba),

A 2. Z(abc) → ¬Z(acb),

A 3. Z(acb) ∧ Z(abd) → Z(cbd),

A 4. Z(cab) ∧ Z(abd) → Z(cbd),

A 5. c 6= d ∧ Z(abc) ∧ Z(abd) → (Z(bcd) ∨ Z(bdc)),

the lower-dimension axiom, stating that there are three non-collinear points,
and the Pasch axiom (here L stands for the collinearity predicate, defined by
L(xyz) :⇔ Z(xyz)∨Z(yzx)∨Z(zxy)∨x = y∨y = z∨z = x; although we do
not have the concept of a ‘line’ in our language, we will refer to lines, saying
that the point p lies on the line 〈a, b〉, for two distinct points a and b, if p = a
or p = b or Z(apb) or Z(pba) or Z(bap)):

A 6. (∀abcde)(∃f) [¬L(abc) ∧ Z(adc) ∧ ¬L(ace) ∧ ¬L(edb)
→ (Z(afb) ∨ Z(bfc)) ∧ L(edf)].

Notice that we do not ask the order to be dense or unending, and we also
do not need the lower-dimension axiom, stating the existence of three non-
collinear points.
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Figure 1. πi
1,1(a, b1, pi, c1), π

i
1,0(a, b1, pi, c2), π

i
0,1(a, b2, pi, c1), π

i
0,0(a, b2, pi, c2)

3. The windmill statement

Let rm(k) denote the remainder of the division of k by m, and let ǫϕ stand
for ϕ if ǫ = 0, and for ¬ϕ if ǫ = 1. Let ǫ(ϕ) stand for ⊥ (the absurdity sign) if
ǫ = 0, and for ϕ if ǫ = 1. To help with the readability of the formal statement
of the windmill problem, we introduce the following defined predicates (where
j, k, l ∈ {0, 1}):

λ(xyz) ⇔ Z(xyz) ∨ Z(yzx) ∨ Z(zxy)

δ(abuv) ⇔ (∃t)λ(abt) ∧ Z(utv)

πj
k,l(a, b, p, c) ⇔ (r2(j+k+1)δ(acbp) ∨r2(j+l) (p = c)) ∧r2(j+l) δ(abcp)

∧
∧

{i|ai 6∈{a,b,c,p}}

[((1−k)δ(abcai) ∧
l δ(acbai)) ∨ (kδ(abcai) ∧

(1−l) δ(acbai))]

Let α(n) = n(n − 1) + 1. Let Kn = {f | f : {1, 2, . . . , α(n)} → {1, 2. . . . , n},
(∃k(n)) k(n) ≤ α(n), such that the restriction of f to {1, 2, . . . , k(n)} is onto,
(∀i) 3 ≤ i ≤ k(n), f(i) 6= f(i − 1), f(i) 6= f(i − 2), f(k(n) − 1) = f(2),
f(k(n)) = f(1)}, let A2 stand for the set of all functions from A to {0, 1},
and in case A = {1, 2, . . . ,m}, let us write m2 for A2. For f ∈ Kn, we define
f(0) = rn+1(f(1) + f(2)).

With these definitions, we are ready to express the windmill theorem as the
following statement:
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WM .
∨

1≤i<j<k≤n L(aiajak)

∨
∨

f∈Kn,g∈k(n)2

∧k(n)
i=3 π

1−g(i−2)
1−g(i−1),g(i)(af(i−1), af(i−2), af(i−3), af(i)).

To see that this is actually the windmill statement of Geoffrey Smith’s prob-
lem, notice that πj

k,l(a, b, p, c) means that c is the first point in the set

{c, a1, . . . , an}\{a, b} the line determined by a and b meets, when it “rotates”
around a “clockwise.” The point p is there to fix the sense of the “rotation,”
and the sub- and superscripts j, k, and l are there to tell us whether p is in

the half-plane toward which the ray
→

ab moves and whether c will be met by
→

ab
or by the opposite ray during its “rotation” (see Fig. 1 for details). If we look
at the “windmill” process of the original statement by Geoffrey Smith, we
notice that the “windmill” consists of lines through single points of the given
set S = {a1, . . . , an}, and that pivots are obtained during what one could
call “windmill stops.” Instead of focusing on the “windmill” as composed
by lines through single points of S, we decided to look at the “windmill” as
a collection of “windmill stops,” i. e. a collection of lines passing through
exactly two points of S. The statement WM makes is that, given a set S
of points a1, . . . a2, that are such that no three are collinear, one can find a
map f in Kn, such that the first windmill stop goes through af(1) and af(2)
(af(0) being chosen as a point different from af(1) and af(2), playing the role
of p in the formula for π, i. e. determining the “clockwise” direction for the
entire windmill process), with windmill pivots af(i), with i ∈ {1, . . . , k(n)},
which, given the definition of Kn, exhaust S, and such that the last windmill
stop has pivot af(1), and goes through af(1) and af(2), just like the stop we
started with. During the whole process, the point p determining the orien-
tation changes (whenever c becomes pivot, and the windmill stop is the line
ac, the new point p is chosen to be the point b from the windmill stop ab
that “rotated” to stop at c, i. e. the b for which πj

k,l(a, b, p, c) holds), but the
orientation itself, and thus the “clockwise” sense of the “rotation”, stays the
same. The reason we cannot stay with the same p is that the windmill can
stop at p, i. e. we can have c = p in πj

k,l(a, b, p, c).

4. The proof

Since the proof in [2] is carried out inside the Euclidean plane, we need to
provide a variant thereof that would hold inside planar ordered domains. We
treat the case in which n, the number of points in the set S, is even and the
case in which it is odd separately.

If n is even, then let as be any vertex of the convex hull of S (these elementary
notions of convex geometry can all be defined and have the usual properties,
as shown in [1]). Among the lines 〈as, ai〉 with i ∈ {1, . . . , n}\{s} there must
be one having an equal number of points on each of its sides. We denote that
particular value of i by t, and start the windmill process with the first pivot
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in as and windmill stop at asat, i. e. f(1) = s, f(2) = t. The first value of
p will be arn+1(f(1)+f(2)) (choosing the index to be rn+1(f(1) + f(2)) had
no other function than making sure it is different from f(1) and f(2)), and

we’ll choose g(1) = 1, g(2) = 0. We define the direction
−→

af(1)af(2) as the East

(and thus
−→

af(2)af(2) as the West, the half-plane determined by 〈af(1), af(2)〉
in which af(0) lies as the Southern half-plane. These directions change in the

course of the windmill process as follows: if πj
k,l(a, b, p, c), then

−→

ab and
−→
ac

point in the same “direction” (i. e. both East or both West) if k = l and in
different directions if k 6= l, whereas the half-plane determined by ab in which
p lies has the same name as the half-plane determined by ac in which b lies if
k = j, and the opposite name if k 6= j. The Southern half-plane determined
by a windmill stop ab will be denoted by σab, and the Northern half-plane
by νab

We now look at the possible changes in the difference δ(ab) = N(ab)− S(ab)
between the number N(ab) of points in νab and the number S(ab) of points
in σab during the windmill process. We want to show that δ can take only
the values 0 and 2.

The next stop will be a point af(3), with the property that there is no point

in S between the rays
−→

af(1)af(2) and
−→

af(1)af(3). Given that af(1) is a vertex
of the convex hull of S, and that the sense of the “rotation about af(1)” is
“clock-wise”, i. e. towards the Southern half-plane, af(3) must lie in σaf(1)af(2)

,

thus δ(af(1)af(3)) must be 2, as the Northern half-plane gains a point, namely
af(2), and the Southern half-plane loses one, namely af(3).

Point af(3) becomes a pivot during the next stage of the windmill process,
and at the next stop, i. e. when line 〈af(1), af(3)〉 “rotates about af(3)” into
〈af(3), af(4)〉 (where af(4) is the point in S which lies either in ν(af(3)af(1))

and for which there is no point in S between
−→

af(3)af(1) and
−→

af(3)af(4), nor
between the rays opposite to the above two, or else lies in σ(af(3)af(1)), and

no point in S lies between the ray opposite to
−→

af(3)af(4) and
−→

af(3)af(1), nor
between the rays opposite to the above two), point af(1) will be in σaf(3)af(4)

,

and we distinguish two cases: (i) af(4) is in σaf(1)af(3)
and (ii) af(4) is in

νaf(1)af(3)
. In case (i), σaf(3)af(4)

both gains and loses a point when compared
to σaf(1)af(3)

, and thus δ stays the same, namely 2, and we are back to the
situation we were in at the windmill stop af(1)af(3), with the pivot, af(4),
East of the other point, af(3), of the windmill stop, with δ taking the value
2.

In case (ii), σaf(3)af(4)
will have one point, af(1), more than σaf(1)af(3)

, and
νaf(3)af(4)

will have one point, af(4), less than νaf(1)af(3)
, so δ will become 0

for the windmill stop af(3)af(4), and we are back to a configuration of the
type we started with at windmill stop af(1)af(2), with the pivot, af(4), to the
West of the other point of the windmill stop, af(3). However, there is one
difference: af(4) no longer needs to be a vertex of the convex hull of S, and so
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we can no longer say, as in the case of the windmill stop af(1)af(2), that the
next point the windmill will meet, while “rotating about af(4)”, will lie in
σaf(4)af(3)

. It can lie in either the Northern and the Southern half-plane, and
so a new situation can appear, that in which af(5) lies in νaf(3)af(4)

. There
is thus, one situations that still needs to be analyzed in complete generality:
the pivot a is West of b at the windmill stop ab, with δ(ab) = 0. The case left
open is that in which c, the first point line 〈a, b〉 meets while “rotating about
a”, lies in νab. In that case νac both gains and loses a point with respect to
νab (it gains b and loses c), so we are back into the previous situation, i. e.
the pivot c lies to the West of the other point, a, of the windmill stop and
δ(ac) = 0.

We conclude that, during the entire windmill process, we have only the fol-
lowing two possible situations for the windmill stop ab: either δ(ab) = 0, and
the pivot a lies to the West of b, or else δ(ab) = 2, and the pivot a lies to the
East of b.

At every stage of the windmill process, the imprint of the “East” on the
convex hull of S, i. e. the point where the Eastward pointing ray of that
windmill stop intersects the convex hull of S, moves in clockwise direction
towards af(1), except when the pivot is a vertex of the convex hull of S, in
which case the imprint stays put for that one step in the process, but will
have to move on in the next, as the pivot changes at that step. After a finite
number of steps, in fact in no more than n(n− 1)/2 steps (given that this is
the total number of lines that can be formed ny joining two points in S, and
thus the upper bound on the number of windmill stops), the imprint will be
for the last time in σaf(1)af(2)

, in the sense that at the next windmill stop the
imprint of the “East” will have to be either af(1) or be in νaf(1)af(2)

. However,
it cannot be in νaf(1)af(2)

, for af(1) would have lied between the two windmill
stops, contradicting the definition of π.

The pivot a of the last windmill stop 〈a, b〉 for which the Eastward imprint
is in σaf(1)af(2)

cannot lie in σaf(1)af(2)
, for if it did, then 〈a, af(1)〉 would be

the next windmill stop, and δ(aaf(1)) would have to be ≤ −1, contradicting
the fact that δ takes only non-negative values.

If a lies on 〈af(1), af(2)〉, then a would have to be af(2), and, since the next
windmill stop, after 〈af(2), b〉 is 〈af(1), af(2)〉, we would be back in the starting
position, with 〈af(1), af(2)〉 as windmill stop and af(1) as pivot, and thus we’d
be done.

If a lies in νaf(1)af(2)
, then, since δ(aaf(1)) would have to be positive, and

since 2 is the only positive value it is allowed to take, there can be no point

in S lying between the rays
−→

af(1)af(2) and
−→

af(1)a, so the next windmill stop,
after 〈af(1), a〉, has to be 〈af(1), af(2)〉. In that case, we are not quite back
where we started from, for although the windmill stop is 〈af(1), af(2)〉, the
pivot is af(2), not af(1) the way it was at the start. However, by the same
reasoning that showed us that, in case we start with a line which has the
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same number of points on each of its sides as first windmill stop, we arrive in
at most n(n− 1)/2 steps back to itself, we conclude that we’ll be either back
to 〈af(1), af(2)〉 with af(2) as pivot, in which case starting with 〈af(1), af(2)〉
as windmill stop and with af(2) as pivot, we arrive back to the same windmill
stop and pivot in at most n(n−1)/2 steps, or else we’ll be back to 〈af(1), af(2)〉
with af(1) as pivot, in which case starting with 〈af(1), af(2)〉 as windmill stop
and with af(1) as pivot, we arrive back to the same windmill stop and pivot
in at most n(n− 1) steps. That each point in S must have become a pivot by
the time the windmill stop returns for the first time to 〈af(1), af(2)〉 is easily
seen by noticing that, at this stage ν(af(1)af(2)) has become what used to
be σ(af(1)af(2)) at the start of the process, and that a point in S can move
from the Southern to the Northern half-plane only by having been touched
by a windmill stop.

In case n is odd, say n = 2k + 1, we let as be any vertex of the convex hull
of S and choose among the lines 〈as, ai〉 with i ∈ {1, . . . , n} \ {s} the one
having k + 1 points on one side and k points on the other side. Just like in
the case in which n is even, we denote that particular value of i by t, and
start the windmill process with the first pivot in as and windmill stop at
〈as, at〉, i. e. f(1) = s, f(2) = t. We now distinguish two possibilities: the
first value of p chosen to start the windmill process, i. e. arn+1(f(1)+f(2)),
can be (i) in the half-plane with k points or (ii) in the half-plane with k + 1
points. In case (i), we notice, as in the n even case treated earlier, that during
the windmill process δ can take on only two values, namely 1 and 3. If we
follow the path of the imprint of the West on the convex hull of S, we notice
that it moves in the “clockwise” direction (i. e. moving inside νaf(1)af(2)

) at
every step of the process, unless the pivot is a vertex of the convex hull of S,
in which case it rests for one step of the windmill process, but will have to
move afterwards. After a finite number of steps, no more than twice the total
number of lines that can be formed by two points in S (since each such line
has two directions that can become the “West” direction during the windmill
process), the imprint of the West has to come back to its original location,
af(1) (it cannot jump over it, the reason being the same as in the n already
discussed even case). Now, the other point a of the windmill stop 〈a, af(1)〉
we arrive at, when the imprint of the West is back at af(1) must be af(2). To
see this, notice that, if a were in σaf(1)af(2)

, then δ(aaf(1)) would have to be

≥ 3, so at the next windmill stop 〈af(1), b〉, we’d have δ(af(1)b) ≥ 5, which is
not possible. If a were in νaf(1)af(2)

, then δ(aaf(1)) would have to be ≤ −1,

which is impossible, and thus a = af(2). Case (ii) is treated analogously, by
noticing that throughout the windmill process δ takes on only the values −1
and 1. For reasons similar to those mentioned in the n even case, each point
in S must have become a pivot during the windmill process.
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5. Validity in ordered regular incidence planes

There is a weaker axiom system, for ordered regular incidence planes from
which WM can be derived. It cannot be expressed in terms of points and
Z, as it is based on the notion of sides of a line in a plane, put forward by
Sperner in [6], from which Z can be defined, but which cannot, in general,
be defined in terms of Z. It can be expressed in a two-sorted language, with
variables for points (to be represented by lower-case Latin characters) and for
lines (to be represented by lower-case Gothic characters), with two relation
symbols, I, with I(ag) to be read as ‘point a is incident with line g’, and D,
with D(agb) to be read as ‘the points a and b lie on different sides of line g’.
With δ(abgh) :⇔ [(D(agb)∧D(ahb))∨ (¬D(agb)∧¬D(ahb))] and ǫδ standing
for δ if ǫ = 1 and for ¬δ if ǫ = 0, the axioms are (see [3]):

J 1. (∀ab)(∃=1g) a 6= b → I(ag) ∧ I(bg),

J 2. (∀g)(∃a1a2a3a4)
∧

1≤i<j≤4 ai 6= aj ∧
∧4

i=1 I(aig)

J 3. (∃abc)(∀g)¬(I(ag) ∧ I(bg) ∧ I(cg)),

J 4. D(agb) → ¬I(ag),

J 5. D(agb) → D(bga),

J 6. ¬I(cg) ∧D(agb) → (D(agc) ∨D(bgc)),

J 7. ¬(D(agb) ∧D(bgc) ∧D(cga)),

J 8. [
∧

1≤i<j≤4 ai 6= aj ∧ hi 6= hj ∧
∧4

i=1 I(aihi) ∧ hi 6= g∧

((
∧4

i=1 I(aig)) ∨ (
∧4

i=1 I(ohi)))]
→ [

∨

ǫi∈{0,1}

ǫ1+ǫ2+ǫ3=2

ǫ1δ(a3a4h1h2)∧
ǫ2δ(a2a4h1h3)∧

ǫ3δ(a2a3h1h4)].

J6 is a weak variant of Pasch’s axiom, stating that if a line g does not pass
through any of the points a, b, and c, and a and b are on different sides of
g then so are at least one of the pairs {a, c} and {b, c}. J7 is a variant of
Pasch’s theorem, stating that a line cannot separate all three pairs {a, b},
{b, c}, and {c, a}. One of its special cases, when a = b = c, implies that a and
b can be on different sides of g only if a 6= b. That these versions are called
“weak” stems from the fact that, if a line g separates the points a and b, it no
longer means that there is a point on g which is between a and b. Indeed, the
line g and the line determined by a and b may have no point in common (a
simple example is provided by the submodel of the ordered affine plane over
Q whose points have coordinates whose denominators are powers of 2, with
the plane separation relation inherited from the ordered affine plane over Q;
see [4] for other examples). The meaning of J8 is best understood in terms
of the notion of separation // (with ab//cd to be read as the point-pair (a, b)
separates the point-pair (c.d)), defined by
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a1a2//a3a4 :⇔ (∃ghk)

4
∧

i=1

I(aig) ∧
∧

1≤i<j≤4

ai 6= aj ∧ I(a1h ∧ I(a2k)

∧h 6= g ∧ k 6= g ∧ ¬δ(a3a4hk). (5.1)

One part of it (corresponding to the
∧4

i=1 I(aig) disjunct) states that, if
a1, a2, a3, a4 are four different collinear points, then exactly one of the sep-
aration relations a1a2//a3a4, a1a3//a2a4, a1a4//a2a3 holds. Its other part

(corresponding to the
∧4

i=1 I(ohi) disjunct) is the dual statement (in the
sense of projective geometry).

Joussen [3] showed that any model M of J1-J8 can be embedded in a pro-
jective ordered plane P, whose separation relation //P is an extension of the
separation relation //M, defined in M terms of IM and DM by (5.1).

The windmill statement WM remains the same, if we change the definition
of the defined notions L and δ occurring in it to:

δ(abuv) ⇔ (∃g) a 6= b ∧ I(ag) ∧ I(bg) ∧D(ugv),

L(abc) ⇔ (∃g) (I(ag) ∧ I(bg ∧ I(cg)) ∨ a = b ∨ b = c ∨ c = a.

To see that WM is true in ordered regular incidence planes, suppose WM

were not derivable from J1-J8. Then there would have to exist a model M
of J1-J8 in which WM is false, i. e. in which ¬WM holds. Now notice that
¬WM can be expressed as an existential statement in the following way:

(∃ai)1≤i≤n(∃gij)1≤i<j≤n

∧

1≤i<j≤n

ai 6= aj ∧
∧

1≤i<j<k≤n

I(aigij) ∧ I(ajgij)

∧
∧

(i,j) 6=(k,l),1≤i<j≤n,1≤k<l≤n

gij 6= gkl

∧
∧

f∈Kn,g∈k(n)2





k(n)
∨

i=3

¬π
1−g(i−2)
1−g(i−1),g(i)(af(i−1), af(i−2), af(i−3), af(i))



 .

in which the δ(aiajuv) occurring in the π’s are just D(ugijv).

Then ¬WM, as an existential statement, would have to hold in the ordered
projective plane P, in which M can be embedded, as well. If we remove from
the projective plane P a line which does not contain any of the points ai
which ¬WM claims to exist in M, such that the windmill process does not
close regardless of the choice of its starting position, we obtain a model N of
A1-A6 in which ¬WM holds, a contradiction.

Theorem 1. {J1-J2, J4-J8} ⊢ WM, where WM is expressed in terms of

points, lines, I, and D.
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By defining Z in terms of I and D by

Z(abc) :⇔ (∃gh) h 6= g ∧ I(ag) ∧ I(bg) ∧ I(cg) ∧ I(bh) ∧D(ahc), (5.2)

one can compare the set of Z-consequences of the axiom system {J1-J2, J4-
J8} to {A1-A6}. It turns out that the Z defined by (5.2) satisfies A1-A5,
but does not need to satisfy A6. On the other hand, J2 does not follow from
{A1-A6}. Although formally incomparable, intuitively {J1-J2, J4-J8} is the
weaker axiom system.
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