为了方便表达, 我将题目的数字改一下, 改成:

设 m 是给定的正整数,有序数组 $(a_1,a_2,a_3,\ldots,a_{2m})$ 中 $a_i=1$ 或 -1 $(1\leqslant i\leqslant 2m)$ 。若对任意的 $1\leqslant k\leqslant l\leqslant m,\,k,\,l\in\mathbb{N}^+$,都有

$$\left| \sum_{i=2k-1}^{2l} a_i \right| \leqslant 2$$

成立,求满足"存在 $1 \le k \le m$,使得 $a_{2k-1}/a_{2k} \ne 1$ "的有序数组 $(a_1, a_2, a_3, \ldots, a_{2m})$ 的个数。 只是将 a_i 缩了一半,一样的意思。

解法一 下面设 $S_n = a_1 + a_2 + \cdots + a_n$,并记 $S_0 = 0$,那么数列 $\{a_n\}$ 与 $\{S_n\}$ 一一对应。由 $a_i = 1$ 或 -1 可知 S_n 为偶数当且仅当 n 为偶数, S_n 为奇数当且仅当 n 为奇数。用 S_n 可以更好地看清题目中的条件,即

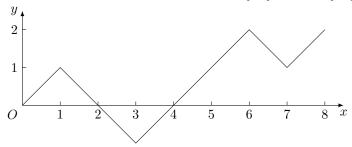
$$\left| \sum_{i=2k-1}^{2l} a_i \right| \le 2 \iff |S_{2l} - S_{2(k-1)}| \le 2,$$

以及

$$\frac{a_{2k-1}}{a_{2k}} \neq 1 \iff a_{2k-1} = a_{2k} = \pm 1 \iff |S_{2k} - S_{2(k-1)}| = 2,$$

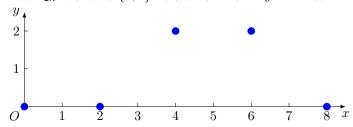
可以看出,条件都只是针对 $\{S_n\}$ 中的偶数项,即 $\{S_{2n}\}$ 的任意两项之差不能超过 2,并且至少有两项之差为 2,由于 $S_0=0$,而且 S_{2n} 为偶数,可见 S_{2n} 的值域要么是 $\{0,2\}$,要么是 $\{0,-2\}$,下面只考虑前者,后者是同理的。

为了方便直观理解,下面用折线图来表示 $\{S_n\}$,例如当 $\{S_n\} = \{0,1,0,-1,0,1,2,1,2,\ldots\}$ 时可用下图表示

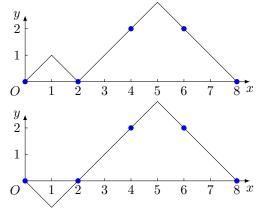


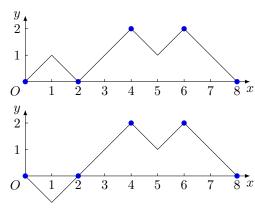
于是问题就是要确定可以有多少条符合条件的这样的折线。

因为 S_{2n} 的值域为 $\{0,2\}$,我们先在 x 轴和 y=2 上标出 S_{2n} ,例如



那么这部分点之间怎样连接? 由于 $a_i = \pm 1$, 而 S_{2n-1} 也没有别的要求,于是此例的点有以下连接方式





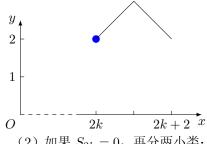
也就是说,数列 $\{S_{2n}\}$ 在递增或递减的地方,之间的连线只有一种选择,而不增不减的地方则有两种选择。 因此,我们先取定增或减的位置,设增减次数共 r 次,这一步有 C_m^r 种取法,由于必然先增后减而且交替, 即位置取定后所有增减都被确定,剩下的 m-r 个不增不减的位置每处都有两种选择,因此共有 $C_m^r 2^{m-r}$ 条 折线的可能。所以,当 r 取遍 1 到 m 时,总数就是

$$\sum_{r=1}^{m} C_m^r 2^{m-r} = \sum_{r=0}^{m} C_m^r 2^{m-r} 1^r - 2^m = (2+1)^m - 2^m = 3^m - 2^m.$$

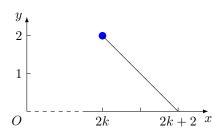
最后别忘记还有值域为 $\{0,-2\}$ 的情况,所以所求的结果为 $2(3^m-2^m)$ 。

解法二 前面的约定与解法一相同,同样我们只需要考虑 S_{2n} 的值域为 $\{0,2\}$ 的情况。 设 m = k 时符合条件的折线条数为 f(k), 那么当 m = k + 1 时,分两类讨论:

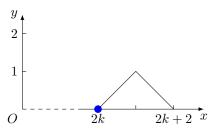
(1) 如果 $S_{2k} = 2$, 那么再向右延伸两步,有以下三种方法。

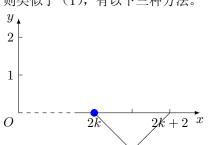


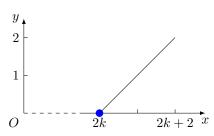
2 1



- (2) 如果 $S_{2k} = 0$, 再分两小类:
- (2-1) 如果此前 $\{S_{2n}\}$ 不是常数,则类似于 (1),有以下三种方法。







(2-2) 如果此前 $\{S_{2n}\}$ 是常数,那么向右的延伸只能是递增。

综合(1)及(2-1)的总数为 3f(k),而(2-2)中由于前面全都有两种选择,总数为 2^k ,故综上有

$$f(k+1) = 3f(k) + 2^k$$
,

又易知 f(1) = 1,故解得 $f(m) = 3^m - 2^m$ 。

同样地,别忘记还有值域为 $\{0,-2\}$ 的情况,所以所求的结果为 $2(3^m-2^m)$ 。

kuing 2014-1-14