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 ABSTRACT

 Goodner [1] has studied the equations to conic sections in the elliptic
 plane by following the methods of Euclidean geometry and using
 Weierstrassian co-ordinates. In the present note the author has
 investigated several properties of the elliptic circles from the same
 analytic standpoint and has shown that some of the well-known
 properties of the Euclidean circles hold as well for the elliptic circles.

 S. S. MITTRA
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 TWO PROBLEMS ON CONVEX FUNCTIONS

 BY A. S. BESICOVITCH and RoY 0. DAVIES

 Given a positive continuous increasing function f(x), 0 < x < 1,
 approximations by a convex* function g(x) from below and from
 above are considered. The approximation is measured by the ratio

 r1 r1
 of the integrals f (x) dx and g(x) dx.

 THEOREM 1. There always exists a convex function g(x) < f (x)
 such that

 g(x) dx > 2 f (x) dx. (1)

 Proof. Take the convex hull* of the curve y = f(x), and let the
 curve y = g(x) be the boundary of the hull from below. Obviously
 g(x) is convex and also is <f(x). If f(x) is itself convex then g(x)
 coincides with f (x) and the Theorem is true. If not then f (x) > g(x)
 on a set of open intervals. Let (x', x") be one of them. We have

 * See the Definitions at the end.
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 g(x') = f (x'), g(x") = f (x"), and in (x', x") g(x) is linear and f (x) <
 f (x"). Hence

 g(x) dx = {f (x') + f(x")} (x"- x'),
 Jx 2

 f (x) dx < f(x") (x"-x'),
 and

 g(x) dx > f (x) dx;

 from which the Theorem follows.

 The proof shows that strict inequality is always obtainable in (1),
 1

 unless f(x) dx = oo; considering f(x) = xl/n for large n, we see
 Jo

 however that the bound -1 can not be improved.

 THEOREM 2. There always exists a convex function g(x) > f(x)
 such that

 f g(x) dx < 2 ff(x) dx. (2)
 Proof. Define po(x) to be the constant function f (); thus po(x)

 is convex. Denote by R0 the rectangle of which three vertices are at
 the points (1, 0), (, f (1)), and (1, 0). Then

 ofpo(x) dx = 2(area Ro),

 and throughout (0, 1)
 To(x) > f (x). (3)

 Denote by bo the largest number <1 such that (3) holds throughout
 (0, bo); thus 1 < bo < 1. If bo= 1, we take g(x) = To(x).
 If bo < 1, write 1 - bo = 310 and let c1 denote the largest value

 of x in [bo, bo + 1o] for which {f(x) - f(bo)}/{x - (bo - lo)} attains
 its maximum; we have bo < cl < bo + lo; 0 <2c1- 1 < bo - lo
 Define (p1(x) to be the function which is 0 in [0, 2c1 - 1] and linear
 in [2cl - 1, 1], with l1(cl) =f(cl) -f(bo); then Tl(x) is convex.
 Denote by R1 the rectangle of which three vertices are at the points
 (c, f (bo)), (cl, f (c)), and (1, f (bo)). Then

 fp1(x) dx = 2(area R1),

 and we shall now prove that throughout (0, cl)

 To(X) + l(x) >f(x).

 67
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 This follows from (3) in (0, bo), while in (bo, cl) we have To(x) > f (bo)
 and

 i = x - (2cq - 1) {(c) -()} gl(x) If 1(() - f ( bo)}

 x - (2c -l 1) f(x) -f( b0o)
 1 -- 'x - (bo -I C,-b -lo)

 x - (2c, - 1) c - (b o - -lo) -(b1)'c-If (x) -- f b)} x - (b0 - 1l) cl - _(2c - 1)
 >f(x) -f(bo),

 from which (4) follows. Denote by bI the largest number <1 such
 that (4) holds throughout (0, bl); thus c1 < b1 < 1. Since o0(x) +
 gl(x) is the sum of convex functions, it is itself convex, and if b =- 1
 we take g(x) = p0(x) + gl(x).

 If b1 < 1, write 1 - b1 = 3l1 and let c2 denote the largest value
 of x in [bl, b1 + ll] for which {f(x) - f (bl)}/{x - (b1 - 1,)} attains
 its maximum; we have bl < c2 < b1 + 11; 0 < 2c2 -1 < b1 - 11.
 Define 92(x) to be the function which is 0 in [0, 2c2 - 1] and linear
 in [22 - 1, 1], with 92(c2) = f(c2) -f(bl); then 92(x) is convex.
 Denote by R2 the rectangle of which three vertices are at the points
 (C2, f(bl)), 2, f (c2)), and (1, f (b)). Then

 922(x) dx = 2(area R2),

 and throughout (0, c2)

 0o(X) + 91(x) + T2(x) >f(x). (5)
 This follows from (4) in (0, bl), while in (bl, c2) we have go(x) +
 gl(x) f(bl) and by the same argument as before (2(x) >f(x) -
 f(bl). Denote by b2 the largest number <1 such that (5) holds
 throughout (0, b2). As before go(x) + 91(X) + q2(x) is convex, and if
 b2 = 1 we take g(x) = 90(x) + l(x) + 9-2(x); if not, we continue
 the construction, possibly transfinitely.
 The construction must terminate after denumerably many steps,

 and from (3), (4), ... it is clear that the resulting convex function
 g(x) -= go(x) + gl(x) + ... will satisfy g(x) > f (x) throughout (0, 1).
 On the other hand the rectangles R0, R1, ... are non-overlapping
 and all contained in the area between the curve y = f(x) and the
 x-axis. Consequently

 g(x) dx = po0(x) dx + fl(x) dx + ...

 = 2{(area RO) + (area R1) + ...}

 2 f (x) dx,

 and the Theorem is proved.
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 The proof shows that strict inequality is always obtainable in (2),
 J1

 unless ff(x) dx = oo; considering f(x) = 1 + (2x - l)/(2n+l) for

 large n, we see however that the bound 2 can not be improved.

 DEFINITIONS

 A function g(x) is called convex if every arc AC of the curve
 y = g(x) lies below, or coincides with, the chord AC. In analytic
 language:

 c-b b-a
 g(b) < g(a) + g(c) whenever a < b < c.

 A point set is called convex if whenever two points P, Q belong to
 the set so does every point of the (straight line) segment PQ. (The
 boundary of every plane convex set is a convex curve: roughly
 speaking, this is a curve without dents.) The convex hull H of a plane
 set E is the common part of all convex sets containing E; it is easy
 to see that H is itself convex, and is thus the smallest convex set

 containing E. The set H can also be defined as p(99(E)), where
 (for any set X) p(X) denotes the union of X and the set of all points
 lying on segments joining points of X.

 Trinity College, Cambridge A. S. BESICOVITCH
 The University, Leicester RoY 0. DAVIES

 PARTICULAR INTEGRALS OF LINEAR
 DIFFERENTIAL EQUATIONS

 BY A. G. MACKIE

 In elementary courses on differential equations the standard
 method of obtaining particular integrals is probably that of the
 variation of parameters or, as it is sometimes rather paradoxically
 called, the variation of constants. In more sophisticated courses
 the idea of the Green's function is introduced. This has many
 advantages, not the least of which is that the method for finding
 particular integrals based on such a function is much better moti-
 vated. Moreover, it is possible to fit in given boundary conditions,
 homogeneous or otherwise, as part of the process and this avoids
 artificially breaking the problem up into two parts, in the second of
 which a plethora of arbitrary constants is related to given boundary
 or initial conditions. A disadvantage of Green's function methods is
 that, if they are to be properly exploited, it is necessary to introduce
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