|
楼主 |
青青子衿
发表于 2023-4-25 22:11
本帖最后由 青青子衿 于 2023-5-10 11:19 编辑
\begin{align*}
\operatorname{Cayl}\left(\bullet\right)&=\begin{Vmatrix}
3a_{300}&a_{120}&a_{102}&2a_{210}&2a_{201}&a_{111}\\
a_{210}&3a_{030}&a_{012}&2a_{120}&a_{111}&2a_{021}\\
a_{201}&a_{021}&3a_{003}&a_{111}&2a_{102}&2a_{012}\\
\dfrac{\partial}{\partial{x}}&0&0&\dfrac{\partial}{\partial{y}}&\dfrac{\partial}{\partial{z}}&0\\
0&\dfrac{\partial}{\partial{y}}&0&\dfrac{\partial}{\partial{x}}&0&\dfrac{\partial}{\partial{z}}\\
0&0&\dfrac{\partial}{\partial{z}}&0&\dfrac{\partial}{\partial{x}}&\dfrac{\partial}{\partial{y}}\\
\end{Vmatrix}{\circ(\bullet)}\\
\\
\overline{\operatorname{Cayl}}\left(\bullet\right)&=\begin{Vmatrix}
\overline{a_{300}}&\overline{a_{120}}&\overline{a_{102}}&\overline{a_{210}}&\overline{a_{201}}&\overline{a_{111}}\\
\overline{a_{210}}&\overline{a_{030}}&\overline{a_{012}}&\overline{a_{120}}&\overline{a_{111}}&\overline{a_{021}}\\
\overline{a_{201}}&\overline{a_{021}}&\overline{a_{003}}&\overline{a_{111}}&\overline{a_{102}}&\overline{a_{012}}\\
2\dfrac{\partial}{\partial{x}}&0&0&\dfrac{\partial}{\partial{y}}&\dfrac{\partial}{\partial{z}}&0\\
0&2\dfrac{\partial}{\partial{y}}&0&\dfrac{\partial}{\partial{x}}&0&\dfrac{\partial}{\partial{z}}\\
0&0&2\dfrac{\partial}{\partial{z}}&0&\dfrac{\partial}{\partial{x}}&\dfrac{\partial}{\partial{y}}\\
\end{Vmatrix}{\circ(\bullet)}\\
\\
\operatorname{Hess}_M\left(\bullet\right)&=\begin{pmatrix}
\dfrac{\partial^2}{\partial{x^2}}&\dfrac{\partial^2}{\partial{x}\partial{y}}&\dfrac{\partial^2}{\partial{x}\partial{z}}\\
\dfrac{\partial^2}{\partial{x}\partial{y}}&\dfrac{\partial^2}{\partial{y^2}}&\dfrac{\partial^2}{\partial{y}\partial{z}}\\
\dfrac{\partial^2}{\partial{x}\partial{z}}&\dfrac{\partial^2}{\partial{y}\partial{z}}&\dfrac{\partial^2}{\partial{z^2}}\\
\end{pmatrix}\left(\bullet\right)\\
\\
\operatorname{Hess}\left(\bullet\right)&=\begin{vmatrix}
\dfrac{\partial^2}{\partial{x^2}}&\dfrac{\partial^2}{\partial{x}\partial{y}}&\dfrac{\partial^2}{\partial{x}\partial{z}}\\
\dfrac{\partial^2}{\partial{x}\partial{y}}&\dfrac{\partial^2}{\partial{y^2}}&\dfrac{\partial^2}{\partial{y}\partial{z}}\\
\dfrac{\partial^2}{\partial{x}\partial{z}}&\dfrac{\partial^2}{\partial{y}\partial{z}}&\dfrac{\partial^2}{\partial{z^2}}\\
\end{vmatrix}\left(\bullet\right)\\
\\
\operatorname{Jac}\left(\bullet,\bullet\bullet,\bullet\!\bullet\!\bullet\right)&=
\begin{vmatrix}
\nabla^{\mathrm{T}}\left(\bullet,\bullet\bullet,\bullet\!\bullet\!\bullet\right)
\end{vmatrix}\\
\operatorname{MixProd}\Big(
\boldsymbol{C},
\boldsymbol{D},
\boldsymbol{E}
\Big)&=\begin{vmatrix}
c_{11} & c_{12} & c_{13} \\
d_{21} & d_{22} & d_{23} \\
e_{31} & e_{32} & e_{33} \\
\end{vmatrix}+\begin{vmatrix}
c_{11} & c_{12} & c_{13} \\
e_{21} & e_{22} & e_{23} \\
d_{31} & d_{32} & d_{33} \\
\end{vmatrix}\\
\,
&\qquad+
\begin{vmatrix}
d_{11} & d_{12} & d_{13} \\
c_{21} & c_{22} & c_{23} \\
e_{31} & e_{32} & e_{33} \\
\end{vmatrix}+
\begin{vmatrix}
e_{11} & e_{12} & e_{13} \\
c_{21} & c_{22} & c_{23} \\
d_{31} & d_{32} & d_{33} \\
\end{vmatrix}\\
\,
&\qquad\quad+
\begin{vmatrix}
d_{11} & d_{12} & d_{13} \\
e_{21} & e_{22} & e_{23} \\
c_{31} & c_{32} & c_{33} \\
\end{vmatrix}
+\begin{vmatrix}
e_{11} & e_{12} & e_{13} \\
d_{21} & d_{22} & d_{23} \\
c_{31} & c_{32} & c_{33} \\
\end{vmatrix}\\
\\
\operatorname{ResDeriv}\left(\bullet\right)&=\operatorname{Resultant}\left(\tfrac{\partial{\bullet}}{\partial{x}},\tfrac{\partial{\bullet}}{\partial{y}},\tfrac{\partial{\bullet}}{\partial{z}}\right)\\
&=\begin{vmatrix}
3 a_{300} & a_{210} & a_{201} & \substack{[[1,4,5]]} & \substack{-[[1,3,4]]} & 0 \\
a_{120} & 3 a_{030} & a_{021} & \substack{[[1,2,6]]} & 0 & \substack{-[[2,4,6]]} \\
a_{102} & a_{012} & 3 a_{003} & 0 & \substack{[[3,5,6]]} & \substack{[[2,3,5]]} \\
2 a_{210} & 2 a_{120} & a_{111} & \substack{[[1,2,5]]+[[1,4,6]]} & \substack{[[1,2,3]]} & \substack{[[1,2,6]]} \\
2 a_{201} & a_{111} & 2 a_{102} & \substack{-[[1,3,4]]} & \substack{-[[1,3,6]]-[[3,4,5]]} & \substack{[[1,2,3]]} \\
a_{111} & 2 a_{021} & 2 a_{012} & \substack{[[1,2,3]]} & \substack{[[2,3,5]]} & \substack{[[2,3,4]]-[[2,5,6]]}
\end{vmatrix}\\
\\
\overline{\operatorname{ResDeriv}}\left(\bullet\right)&=\overline{\operatorname{Resultant}}\left(\tfrac{\partial{\bullet}}{\partial{x}},\tfrac{\partial{\bullet}}{\partial{y}},\tfrac{\partial{\bullet}}{\partial{z}}\right)\\
&=\begin{vmatrix}
\overline{a_{300}} & \overline{a_{210}} & \overline{a_{201}} & \substack{8\overline{[[1,4,5]]}} & \substack{-4\overline{[[1,3,4]]}} & 0 \\
\overline{a_{120}} & \overline{a_{030}} & \overline{a_{021}} & \substack{4\overline{[[1,2,6]]}} & 0 & \substack{-8\overline{[[2,4,6]]}} \\
\overline{a_{102}} & \overline{a_{012}} & \overline{a_{003}} & 0 & \substack{8\overline{[[3,5,6]]}} & \substack{4\overline{[[2,3,5]]}} \\
\overline{a_{210}} & \overline{a_{120}} & \overline{a_{111}} & \substack{2\overline{[[1,2,5]]}+4\overline{[[1,4,6]]}} & \substack{\overline{[[1,2,3]]}} & \substack{2\overline{[[1,2,6]]}} \\
\overline{a_{201}} & \overline{a_{111}} & \overline{a_{102}} & \substack{-2\overline{[[1,3,4]]}} & \substack{-2\overline{[[1,3,6]]}-4\overline{[[3,4,5]]}} & \substack{\overline{[[1,2,3]]}} \\
\overline{a_{111}} & \overline{a_{021}} & \overline{a_{012}} & \substack{\overline{[[1,2,3]]}} & \substack{2\overline{[[2,3,5]]}} & \substack{2\overline{[[2,3,4]]}-4\overline{[[2,5,6]]}}
\end{vmatrix}\\
\end{align*}
\begin{align*}
F(x,y,z)&=a_{300} x^3+a_{030} y^3+a_{003}z^3\\
&\qquad+a_{210} x^2 y+a_{201} x^2 z+a_{120} x y^2+a_{021}y^2 z\\
&\quad\qquad+a_{102} x z^2+a_{012}y z^2+a_{111} x y z\\
\overline{F}(x,y,z)&=\overline{a_{300}} x^3+\overline{a_{030}} y^3+\overline{a_{003}}z^3\\
&\qquad+3\overline{a_{210}} x^2 y+3\overline{a_{201}} x^2 z+3\overline{a_{120}} x y^2+3\overline{a_{021}}y^2 z\\
&\quad\qquad+3\overline{a_{102}} x z^2+3\overline{a_{012}}y z^2+6\overline{a_{111}} x y z\\
\\
H_0=H\big(\,F\,\big)&=\dfrac{1}{2}\operatorname{Hess}\big(\,F\,\big)\\
H_{M}\big(\,F\,\big)&=\operatorname{Hess}_{M}\big(\,F\,\big)\\
G_0=G\big(\,F\,\big)&=\dfrac{1}{3}\det\begin{pmatrix}
H_M(F)&\nabla\,\!H(F)\\
\nabla^{\mathrm{T}}H(F)&0\\
\end{pmatrix}\\
J_0=J\big(\,F\,\big)&=\dfrac{1}{2^8\cdot3^3}\operatorname{Jac}\left(F,H(F),G(F)\right)\\
S_{0}=S\big(\,F\,\big)&=-\operatorname{Cayl}\big(\,F\,\big)\\
T_{0}=T\big(\,F\,\big)&=-\operatorname{Cayl}\big(\,H(F)\,\big)\\
\\
H_1=\overline{H}\big(\,\overline{F}\,\big)&=\dfrac{1}{2^3\cdot3^3}\operatorname{Hess}\big(\,\overline{F}\,\big)=\dfrac{1}{2^2\cdot3^3}\overline{H(F)}\\
\overline{H}_{M}\big(\,\overline{F}\,\big)&=\dfrac{1}{2\cdot3}\operatorname{Hess}_{M}\big(\,\overline{F}\,\big)=\dfrac{1}{2\cdot3}\overline{H_{M}(F)}\\
G_1=\overline{G}\big(\,\overline{F}\,\big)&=\det\begin{pmatrix}
\overline{H}_M(\overline{F})&\nabla\overline{H}(\overline{F})\\
\nabla^{\mathrm{T}}\overline{H}(\overline{F})&0\\
\end{pmatrix}=\dfrac{1}{2^6\cdot3^7}\overline{G(F)}\\
J_1=\overline{J}\big(\,\overline{F}\,\big)&=\dfrac{1}{3^2}\operatorname{Jac}\left(\overline{F},\overline{H}(\overline{F}),\overline{G}(\overline{F})\right)=\dfrac{1}{3^9}\overline{J(F)}\\
S_1=\overline{S}\big(\,\overline{F}\,\big)&=-\dfrac{1}{2^4\cdot3}\overline{\operatorname{Cayl}}\big(\,\overline{F}\,\big)=\dfrac{1}{2^4\cdot3^4}\overline{S(F)}\\
T_1=\overline{T}\big(\,\overline{F}\,\big)&=-\dfrac{1}{2}\overline{\operatorname{Cayl}}\big(\,\overline{H}(\overline{F})\,\big)=\dfrac{1}{2^3\cdot3^6}\overline{T(F)}\\
\\
\Delta(F)&=-\dfrac{1}{2^6\cdot3^3}\Big(S^3(F)+T^2(F)\Big)\\
\Delta(F)&=-\dfrac{1}{3^3}\operatorname{Resultant}\left(\tfrac{\partial{F}}{\partial{x}},\tfrac{\partial{F}}{\partial{y}},\tfrac{\partial{F}}{\partial{z}}\right)\\
\overline{\Delta}(\overline{F})&=-\dfrac{1}{3^9}\left(2^6\overline{S}{}^3(\overline{F})+\overline{T}{}^2(\overline{F})\right)=\dfrac{1}{3^9}\overline{\Delta(F)}\\
\overline{\Delta}(\overline{F})&=-\overline{\operatorname{Resultant}}\left(\tfrac{\partial{\overline{F}}}{\partial{x}},\tfrac{\partial{\overline{F}}}{\partial{y}},\tfrac{\partial{\overline{F}}}{\partial{z}}\right)=\dfrac{1}{3^9}\overline{\Delta(F)}\\
\\
\boldsymbol{r}^{\mathrm{T}}&=\left(x,y,z\right)\\
H^{[2]}_M(F)&=H_M(H(F))=\dfrac{1}{2}\operatorname{Hess}_M(\operatorname{Hess}(F))\\
\Theta_{0}=\Theta(F)&=\dfrac{1}{24}\operatorname{MixProd}\Big(
\boldsymbol{r}\boldsymbol{r}^{\mathrm{T}},\operatorname{adj}(H_M(F)),\operatorname{adj}(H^{[2]}_M(F))
\Big)\\
&=\dfrac{1}{2}\left(G\big(\,F\,\big)-3S\big(\,F\,\big)\cdot\,\!F\cdot\,\!H\big(\,F\,\big)\right)\\
H^{[2]}_M(\overline{F})&=H_M(H(\overline{F}))=\frac{1}{2^3\cdot 3^3}\operatorname{Hess}_M(\operatorname{Hess}(\overline{F}))\\
\Theta_{1}=\overline{\Theta}(\overline{F})&=\dfrac{1}{4}\operatorname{MixProd}\Big(
\boldsymbol{r}\boldsymbol{r}^{\mathrm{T}},\operatorname{adj}(H_M(\overline{F})),\operatorname{adj}(H^{[2]}_M(\overline{F}))
\Big)\\
&=\overline{G}\big(\,\overline{F}\,\big)-3\overline{S}\big(\,\overline{F}\,\big)\cdot\overline{F}\cdot\overline{H}\big(\,\overline{F}\,\big)\\
&=\dfrac{1}{2^5\cdot 3^7}\,\overline{\Theta(F)}\\
\end{align*}
|
|