Forgot password?
 快速注册
Search
View: 102|Reply: 8

[数论] $\sqrt{2}+\dots+\sqrt{n}$的次数

[Copy link]

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

hbghlyj Post time 2024-4-5 20:15 |Read mode
$\sqrt{2}$的极小多项式的次数是2
$\sqrt{2}+\sqrt{3}$的极小多项式的次数是4
$\sqrt{2}+\sqrt{3}+\sqrt{4}$的极小多项式的次数是4
$\cdots\cdots$
有何规律?

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-5 20:17

只需考虑其中的素数

\(2,3,\dots,n\)中的素数个数为$\text{PrimePi}(n)$,如$\text{PrimePi}(5)=3$.
任意选取\(2,3,\dots,n\)中的素数$p$,那么$\sqrt{p}$有2个共轭,所以总的共轭数是$2^{\text{PrimePi}(n)}$

答案是$2^{\text{PrimePi}(n)}$吗?

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-5 20:45

$\sqrt[3]{2}+\dots+\sqrt[3]{n}$的次数

按上面的,$\sqrt[3]{2}+\dots+\sqrt[3]{n}$的次数为$3^{\text{PrimePi}(n)}$,对吗

471

Threads

945

Posts

9837

Credits

Credits
9837

Show all posts

青青子衿 Post time 2024-4-10 03:04
hbghlyj 发表于 2024-4-5 20:17
\(2,3,\dots,n\)中的素数个数为$\text{PrimePi}(n)$,如$\text{PrimePi}(5)=3$.
任意选取\(2,3,\dots,n\)中 ...

oeis.org/A048656
COMMENTS:  Let K(n) be the field that is generated over the rationals Q by adjoining the square roots of the numbers 1,2,3,...,n, i.e., K(n) = Q(sqrt(1),sqrt(2),...,sqrt(n)); a(n) is the degree of this field over Q. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-10 21:01
青青子衿 发表于 2024-4-9 19:04
oeis.org/A048656
COMMENTS:  Let K(n) be the field that is generated over the rationals Q b ...


$\text{A048656}(n)$ is the number of squarefree divisors $d$ of $n!$

$d$ squarefree, $d|n!\implies d=\prod_{i=1}^{\text{PrimePi}(n)}p_i^{\alpha_i},\alpha_i\in\{0,1\}\implies\text{A048656}(n)=2^{\text{PrimePi}(n)}$

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-10 21:06
hbghlyj 发表于 2024-4-5 12:17
任意选取\(2,3,\dots,n\)中的素数$p$,那么$\sqrt{p}$有2个共轭,所以总的共轭数是$2^{\text{PrimePi}(n)}$


Galois Group of the extension $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5}):\mathbb{Q}$ is $\mathbb{Z}_2 \times \mathbb{Z}_2  \times \mathbb{Z}_2$

(1) The elements of $K := \Bbb Q[\sqrt{2}, \sqrt{3}, \sqrt{5}]$ are those of the form
$$a + b \sqrt{2} + c \sqrt{3} + d \sqrt{5} + e \sqrt{6} + f \sqrt{10} + g \sqrt{15} + h \sqrt{30},$$ corresponding to the fact that $[K : \Bbb Q] = 8$, that is, that $K$ is an $8$-dimensional vector space over $\Bbb Q$. But as a field $K$ is generated over $\Bbb Q$ by just $3$ elements, namely (for example) $\sqrt{2}, \sqrt{3}, \sqrt{5}$, and the action of any automorphism $\sigma \in \operatorname{Gal}(K / \Bbb Q)$ is determined by its action on these. For example, $\sigma(\sqrt{30}) = \sigma(\sqrt{2} \sqrt{3} \sqrt{5}) = \sigma(\sqrt{2}) \sigma(\sqrt{3}) \sigma(\sqrt{5}).$

(2) The additional automorphisms come from compositions of $\rho_1, \rho_2, \rho_3$. For example, $\tau := \rho_1 \circ \rho_2$ is characterized by $\tau(\sqrt{2}) = - \sqrt{2}$, $\tau(\sqrt{3}) = - \sqrt{3}$, $\tau(\sqrt{5}) = \sqrt{5}$. Since all three generators $\rho_i$ have order $2$ and commute with each other, we can write any automorphism as $\rho_1^{a_1} \rho_2^{a_2} \rho_3^{a_3}$, $a_1, a_2, a_3 \in \{0, 1\}$, yielding eight automorphisms in total as claimed.

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-10 21:08
$\text{Gal}(\Bbb Q(\sqrt{p_1},...,\sqrt{p_n})/\Bbb Q)=(\Bbb Z/2\Bbb Z)^n$ for distinct prime numbers $p_1,\dots,p_n$
This question has been asked many times, and been given many answers (see the links, especially those given by Jykri). I propose here a very simple proof  based on Kummer theory. I recall the setting of this theory (which can be found in any course on Galois theory): let $m$ be a fixed integer, $K$ a field of characteristic not dividing $m$, containing the group $W_m$ of all $m$th roots of $1$; let $A$ be a subgroup of $K^\ast$ containing $K^{\ast m}$ , and let $L = K(A^{1/m})$, the field obtained by adding to $K$ all the $m$th roots of all the elements of $A$. Then $L/K$ is Galois, with abelian group $G$ of exponent $m$, isomorphic to $\operatorname{Hom}(A/K^{\ast m}, W_m)$.

Here we take $K = \Bbb Q$, $m = 2$, $A_n$ = the (multiplicative) subgroup generated by $p_1$ , ..., $p_n$ and $\Bbb Q^{\ast 2}$. We want to show that $\Bbb Q((A_n)^{1/2})/\Bbb Q$ has Galois group isomorphic to $\underbrace{\Bbb Z/2\Bbb Z \times \cdots \Bbb Z/2\Bbb Z}_{\text{$n$ times}}$. By Kummer theory, this amounts to show that $A_n \mod{\Bbb Q^{\ast 2}}$ has the same description. Here we shift perspectives and use elementary linear algebra: all the previous multiplicative groups are of exponent 2, hence can be viewed as vector spaces over the field $\Bbb Z/2\Bbb Z$. Let us show that $p_1 \mod {\Bbb Q^{\ast 2}}$, ..., $p_n \mod {\Bbb Q^{\ast 2}}$ form a basis of $A_n \mod {\Bbb Q^{\ast 2}}$. Any relation of linear dependence between them, written multiplicatively, would be of the form:
A product of distinct $p_i$'s is equal to an element of $\Bbb Q^{\ast 2}$.

This is impossible by the unicity of decomposition into primes in $\Bbb Z$. Thus we have shown that $A_n \mod{\Bbb Q^{\ast 2}}$, as a vector space over $\Bbb Z/2\Bbb Z$ (written multiplicatively), has dimension $n$. QED

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-10 21:36
青青子衿 发表于 2024-4-9 19:04
K(n) = Q(sqrt(1),sqrt(2),...,sqrt(n)); a(n) is the degree of this field over Q.


忽然发现有一个事情没证明:
这里的K(n) = Q(sqrt(1),sqrt(2),...,sqrt(n)) 为什么等于 Q(sqrt(1)+sqrt(2)+...+sqrt(n))

$\supseteq$是显然的。那 $\subseteq$ 呢

3150

Threads

8385

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65392
QQ

Show all posts

 Author| hbghlyj Post time 2024-4-10 21:56


可以用$\sqrt{2}+\dots+\sqrt{n}$的共轭都不相等来说明它不包含于$\Bbb Q(\sqrt2,\dots,\sqrt{n})$的任何真子域,
所以$\Bbb Q(\sqrt2+\dots+\sqrt{n})$是整个$\Bbb Q(\sqrt2,\dots,\sqrt{n})$

hbghlyj 发表于 2024-4-5 12:45
按上面的,$\sqrt[3]{2}+\dots+\sqrt[3]{n}$的次数为$3^{\text{PrimePi}(n)}$,对吗


但$\mathbb Q(\sqrt[3]{2},\dots,\sqrt[3]{n})$不是Galois扩张,不能讨论“共轭”了,这次该如何证明$\mathbb Q(\sqrt[3]{2}+\dots+\sqrt[3]{n})$是整个$\mathbb Q(\sqrt[3]{2},\dots,\sqrt[3]{n})$呢

手机版|悠闲数学娱乐论坛(第3版)

2025-3-5 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list