|
本帖最后由 青青子衿 于 2025-2-2 09:46 编辑
\begin{gather*}
\quad\begin{split}
k'&=\sqrt{1-k^2}\\
l'&=\sqrt{1-l^2}\\
\ell'&=\sqrt{1-\ell^2}\\
K=K(k)&=\int_0^{1}\frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-k^2t^2)}}\\
K'=K(k')&=\int_0^{1}\frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-k'^2t^2)}}\\
\\
\end{split}\\
\frac{K(k')}{K(k)}=p\cdot\frac{K(l')}{K(l)}=\frac{1}{p}\cdot\frac{K(\ell')}{K(\ell)}\\
\\
\begin{aligned}
M=\frac{K(k)}{K(l)}&&
\hat{M}=(-1)^{\frac{p-1}{2}}\frac{K(\ell')}{K(k')}\\
\end{aligned}
\end{gather*}
\begin{gather*}
\quad\begin{aligned}
\ell&=k^p\prod_{s=1}^{\frac{p-1}{2}}\operatorname{sn}^4\left(K-s\frac{2K}{p},k\right)&\hat{M}&=(-1)^{\frac{p-1}{2}}\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{\operatorname{sn}^2(K-s\frac{2K}{p},k)}{\operatorname{sn}^2(s\frac{2K}{p},k)}\right)\\
&=k^p\prod_{s=1}^{\frac{p-1}{2}}\operatorname{cd}^4\left(s\frac{2K}{p},k\right)&&=(-1)^{\frac{p-1}{2}}\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{\operatorname{cs}^2(s\frac{2K}{p},k)}{\operatorname{dn}^2(s\frac{2K}{p},k)}\right)\\
l&=k^{2-p}\prod_{s=1}^{\frac{p-1}{2}}\operatorname{dn}^4\left(K'-s\frac{2K'}{p},k'\right)&M&=\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{\operatorname{sn}^2(s\frac{2K'}{p},k')}{\operatorname{sn}^2(K'-s\frac{2K'}{p},k')}\right)\\
&=k^p\prod_{s=1}^{\frac{p-1}{2}}\operatorname{nd}^4\left(s\frac{2K'}{p},k'\right)&&=\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{\operatorname{dn}^2(s\frac{2K'}{p},k')}{\operatorname{cs}^2(s\frac{2K'}{p},k')}\right)\\
\end{aligned}
\end{gather*}
\begin{align*}
\qquad\operatorname{sn}\left(\frac{u}{\hat{M}},\ell\right)
&=\frac{\operatorname{sn}\left(u,k\right)}{\hat{M}}\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{1-\frac{\operatorname{sn}^2(u,k)}{\operatorname{sn}^2(s\frac{2K}{p},k)}}{1-\frac{k^2\operatorname{sn}^2(u,k)}{\operatorname{ns}^2(s\frac{2K}{p},k)}}\right)\\
\operatorname{sn}\left(M\cdot{u},l\right)
&=M\cdot\operatorname{sn}\left(u,k\right)\prod_{s=1}^{\frac{p-1}{2}}\left(\frac{1+\frac{\operatorname{sn}^2(u,k)}{\operatorname{sc}^2(s\frac{2K'}{p},k')}}{1+\frac{k^2\operatorname{sn}^2(u,k)}{\operatorname{cs}^2(s\frac{2K'}{p},k')}}\right)\\
\end{align*}
- pa = 11;
- ka = Sqrt[ModularLambda[I*Sqrt[pa]]];
- la = Sqrt[ModularLambda[I/Sqrt[pa]]];
- \[ScriptL]a = Sqrt[ModularLambda[I*pa*Sqrt[pa]]];
- N[{EllipticK[1 - ka^2]/EllipticK[ka^2],
- pa*EllipticK[1 - la^2]/EllipticK[la^2],
- 1/pa*EllipticK[1 - \[ScriptL]a^2]/EllipticK[\[ScriptL]a^2]},
- 20] // Column
- N[{ka^pa*
- Product[JacobiSN[EllipticK[ka^2] - s (2 EllipticK[ka^2])/pa,
- ka^2]^4, {s, 1, (pa - 1)/2}],
- ka^pa*Product[
- JacobiCD[s (2 EllipticK[ka^2])/pa, ka^2]^4, {s, 1, (pa - 1)/2}],
- Sqrt[ModularLambda[I*pa*Sqrt[pa]]]}, 20] // Column
- N[{ka^(2 - pa) Product[
- JacobiDN[EllipticK[1 - ka^2] - s (2 EllipticK[1 - ka^2])/pa,
- 1 - ka^2]^4, {s, 1, (pa - 1)/2}],
- ka^pa*Product[
- JacobiND[(2 s*EllipticK[1 - ka^2])/pa, 1 - ka^2]^4, {s,
- 1, (pa - 1)/2}],
- Sqrt[ModularLambda[I/Sqrt[pa]]]}, 20] // Column
- pa3 = 3;
- ka3 = Sqrt[ModularLambda[I Sqrt[pa3]]];
- \[ScriptL]a3 =
- Sqrt[ModularLambda[
- I*pa3*Sqrt[
- pa3]]]; (*(2^(7/6)*3+ 2^(17/6)*3^(1/2)-2^(1/2)*3^2- \
- 2^(7/6)*3^(1/2)-2^(1/2)*3^(1/2))/12*)
- N[(Sqrt[3] x (1 + (2 Sqrt[3] - 3)/6 x^2))/(1 + Sqrt[3]/2 x^2), 20]
- N[Sqrt[3] x*
- Product[(1 +
- x^2/JacobiSC[s (2 EllipticK[1 - ka3^2])/pa3,
- 1 - ka3^2]^2)/(1 + (ka3^2*x^2)/
- JacobiCS[s (2 EllipticK[1 - ka3^2])/pa3, 1 - ka3^2]^2), {s,
- 1, (pa3 - 1)/2}], 20]
- N[(-(((1 + 2^(1/3))^2 3^(1/2))/3)
- x (1 - ((
- 3^(1/4) - 2^(1/3)*3^(1/4) + 2^(2/3)*3^(1/4) + 3^(3/4) +
- 2^(1/3) *3^(3/4))/6)^2 x^2))/(
- 1 - ((2^(1/6)*3^(3/4) + 2^(1/2) *3^(3/4) - 2^(1/6)*3^(5/4))/
- 6)^2 x^2), 20]
- N[-(((1 + 2^(1/3))^2 3^(1/2))/3) x*
- Product[(1 - x^2/JacobiSN[(2 s EllipticK[ka3^2])/pa3, ka3^2]^2)/(
- 1 - (ka3^2 x^2)/JacobiNS[(2 s EllipticK[ka3^2])/pa3, ka3^2]^2), {s,
- 1, (pa3 - 1)/2}], 20]
- pb = 5;
- kb = Sqrt[ModularLambda[I Sqrt[pb]]];
- N[(Sqrt[5]
- x (1 + (Sqrt[2 + 2 Sqrt[5]] - 2 )/2 x^2 + (
- 15 - Sqrt[5] - 5 Sqrt[2 + 2 Sqrt[5]])/20 x^4))/(
- 1 + Sqrt[10 Sqrt[5] - 10]/
- 2 x^2 + (-5 + 3 Sqrt[5] - Sqrt[50 Sqrt[5] - 110])/4 x^4),
- 20] // Factor
- N[Sqrt[5] x*
- Product[(
- 1 + x^2/JacobiSC[s (2 EllipticK[1 - kb^2])/pb, 1 - kb^2]^2)/(
- 1 + (kb^2 x^2)/
- JacobiCS[s (2 EllipticK[1 - kb^2])/pb, 1 - kb^2]^2), {s, 1, (
- pb - 1)/2}], 20] // Factor
复制代码
sci-hub.ru/10.1007/s00407-013-0131-3
sci-hub.ru/https://royalsocietypublishing.org/doi/10.1098/rstl.1874.0011
- pa5 = 5;
- ka5 = Sqrt[
- ModularLambda[
- I*Sqrt[pa5]]]; (*(Sqrt[2]-Sqrt[10]+2Sqrt[Sqrt[5]-1 ])/4*)
- la5 = Sqrt[
- ModularLambda[
- I/Sqrt[pa5]]]; (*(Sqrt[10]-Sqrt[2]+2Sqrt[Sqrt[5]-1 ])/4*)
- N[(Sqrt[5]
- x (1 + (Sqrt[2 + 2 Sqrt[5]] - 2)/2 x^2 + (
- 15 - Sqrt[5] - 5 Sqrt[2 + 2 Sqrt[5]])/20 x^4))/(
- 1 + Sqrt[10 Sqrt[5] - 10]/2 x^2 + (
- 3 Sqrt[5] - 5 - Sqrt[50 Sqrt[5] - 110])/4 x^4), 20] // Factor
- N[Sqrt[5] x*
- Product[(1 +
- x^2/JacobiSC[s (2 EllipticK[1 - ka5^2])/pa5, 1 - ka5^2]^2)/(
- 1 + (ka5^2 x^2)/
- JacobiCS[s (2 EllipticK[1 - ka5^2])/pa5, 1 - ka5^2]^2), {s,
- 1, (pa5 - 1)/2}], 20] // Factor
- N[JacobiSN[Sqrt[5] EllipticF[ArcSin[x], ka5^2], la5^2] /.
- x -> 1/10, 20]
- N[JacobiSN[Sqrt[5] InverseJacobiSN[x, ka5^2], la5^2] /.
- x -> 1/10, 20]
- N[(Sqrt[5]
- x (1 + (Sqrt[2 + 2 Sqrt[5]] - 2)/2 x^2 + (
- 15 - Sqrt[5] - 5 Sqrt[2 + 2 Sqrt[5]])/20 x^4))/(
- 1 + Sqrt[10 Sqrt[5] - 10]/2 x^2 + (
- 3 Sqrt[5] - 5 - Sqrt[50 Sqrt[5] - 110])/4 x^4) /. x -> 1/10, 20]
复制代码
|
|