|
$d$无平方因数,则$x^2-d y^2=1$有非平凡解$(x,y)\ne(\pm1,0)$
MSE
见John Stillwell《Elements of number theory》第86页:Nontrivial solution of the Pell equation.
- 由Dirichlet approximation theorem,有无穷多对整数$(a,b)$使得$|a-b \sqrt{d}|<\frac{1}{b}$
- 由\[
|a+b \sqrt{n}| \leq|a-b \sqrt{n}|+|2 b \sqrt{d}| \leq|3 b \sqrt{d}|,
\]
和第1步得,有无穷多对整数$(a,b)$使得
\[
\left|a^2-d b^2\right| \leq \frac{1}{b} \cdot 3 b \sqrt{d}=3 \sqrt{d}
\] - $|r|\le3 \sqrt{d}$的整数$r$只有有限个。
由Pigeonhole principle得$x^2−dy^2=r$有無窮多组整数解,
再次由Pigeonhole principle,这些解中必有兩組解$(x_i,y_i)$模$r$同餘:
$$x_1\equiv x_2\pmod r$$$$y_1\equiv y_2\pmod r$$得出
\[-x_1 y_2 + x_2 y_1\equiv0\pmod r\]
且\[x_1x_2-d\cdot y_1y_2\equiv x_1^2-d\cdot y_1^2=r\equiv 0\pmod r\]
所以 $\frac{-x_1 y_2 + x_2 y_1}{r}\inZ$ 且 $\frac{x_1 x_2 - d \cdot y_1 y_2}{r}\inZ,$ - 设 $y=\frac{-x_1 y_2 + x_2 y_1}{r}\inZ,$ $x=\frac{x_1 x_2 - d \cdot y_1 y_2}{r}\inZ,$ 则
$$x + y\sqrt{d} =\frac{x_1 + y_1\sqrt{d}}{x_2 + y_2\sqrt{d}} = \frac{(x_1 x_2 - d \cdot y_1 y_2)+ (-x_1 y_2 + x_2 y_1)\sqrt{d}}{r}$$
由于$(x + y\sqrt{d})(x-y\sqrt{d}) =\frac{x_1 + y_1\sqrt{d}}{x_2 + y_2\sqrt{d}} \frac{x_1 - y_1\sqrt{d}}{x_2 - y_2\sqrt{d}} =\frac rr=1$
所以 $x,y$ 是$x^2-dy^2=1$的一组整数解
从我们的假定$(x_1,y_1)$与$(x_2,y_2)$为$x^2-d y^2=r$的不同解,有$x+y\sqrt d=\frac{x_1+y_1\sqrt d}{x_2+y_2\sqrt d}\ne\pm1$,
所以 $x,y$ 是$x^2-dy^2=1$的一组非平凡解
证毕 |
|