|
证明
我们知道,对$0<x<1$和正整数$n$,有
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-st}dsdt=\sum_{k=1}^{n}\int_{x}^{1}\int_{x}^{1} (st)^{k-1}dsdt=\sum_{j=1}^{n}\left(\frac{1-x^{j}}{j}\right)^{2} \]
于是,不等式可以变成
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-x^{2n}}\cdot\frac{1}{1-st}dsdt<(4\ln2)\frac{1-x}{1+x} \]
显然又有
\[ \int_{x}^{1}\int_{x}^{1}\frac{1-(st)^n}{1-x^{2n}}\cdot\frac{1}{1-st}dsdt<\int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt \]
故,只要证明
\[ \int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt <(4\ln2)\frac{1-x}{1+x} \qquad (0<x<1)\]
\begin{align*}
\int_{x}^{1}\int_{x}^{1}\frac{1}{1-st}dsdt&=\int_{x}^{1}\left(\frac{\ln(1-xt)-\ln(1-t)}{t}\right)dt\\
&=-\int_{x}^{1}\frac{\ln(1-t)}{t}dt+\int_{x^2}^{x}\frac{\ln(1-t)}{t}dt\\
&=-2\int_{x}^{1}\frac{\ln(1-t)}{t}dt+\int_{x^2}^{1}\frac{\ln(1-t)}{t}dt
\end{align*}
对后一个积分作替换$t=y^2$,并注意
\[ \ln(1-y^2)=\ln(1-y)+\ln(1+y) \]
于是,不等式变成
\[ \int_{x}^{1}\frac{\ln(1+t)}{t}dt<(2\ln2)\frac{1-x}{1+x},\qquad (0<x<1) \]
而函数$\displaystyle f(t)=\frac{\ln(1+t)}{t}$是递减函数,故
\[ \int_{x}^{1}\frac{\ln(1+t)}{t}dt<(1-x)\frac{\ln(1+x)}{x}=\frac{1-x}{1+x}\left(1+\frac{1}{x}\right)\ln(1+x)<2\ln2 \frac{1-x}{1+x} \]
Hence we are done!
 |
|