|
用DSolve
- DSolve[{2 f[t] f'[t] - 2 f[t] == t f'[t], f[1] == 0}, f[t], t]
复制代码
解得$f$恒等于0啊
用WolframAlpha Get LaTeX form from step by step solution
first-order nonlinear ordinary differential equation
两种方法:
Solve as a homogeneous equation:
- content=WolframAlpha["2f(t)f'(t)=f(t)+f(t)+tf'(t),f(1)=0",{{"Solution",2},"Content"},PodStates->{"Solution__Step-by-step solution"}]
复制代码
\begin{array}{l}
\text{Solve }2 f(t) \frac{df(t)}{dt}=t \frac{df(t)}{dt}+2 f(t)\text{, such that }f(1)=0: \\
\text{Let }f(t)=t v(t), \text{which gives }\frac{df(t)}{dt}=t \frac{dv(t)}{dt}+v(t): \\
2 t \left(t \frac{dv(t)}{dt}+v(t)\right) v(t)=t \left(t \frac{dv(t)}{dt}+v(t)\right)+2 t v(t) \\
\text{Simplify:} \\
2 t \left(t \frac{dv(t)}{dt}+v(t)\right) v(t)=t \left(t \frac{dv(t)}{dt}+3 v(t)\right) \\
\text{Solve for }\frac{dv(t)}{dt}: \\
\frac{dv(t)}{dt}=\frac{-2 v(t)^2+3 v(t)}{t (2 v(t)-1)} \\
\text{Divide both sides by }\frac{-2 v(t)^2+3 v(t)}{2 v(t)-1}: \\
\frac{\frac{dv(t)}{dt} (2 v(t)-1)}{-2 v(t)^2+3 v(t)} =\frac{1}{t} \\
\text{Integrate both sides with respect to }t: \\
\int \frac{\frac{dv(t)}{dt} (2 v(t)-1)}{-2 v(t)^2+3 v(t)} \, dt =\int \frac{1}{t} \, dt \\
\text{Evaluate the integrals:} \\
-\frac{2}{3} \log (-2 v(t)+3)-\frac{1}{3} \log (v(t)) =\log (t)+c_1\text{, where }c_1\text{ is an arbitrary constant.} \\
\text{Substitute back for }f(t)=t v(t): \\
\text{Answer:}\\
-\frac{1}{3} \log \left(\frac{f(t)}{t}\right)-\frac{2}{3} \log \left(-\frac{2 f(t)}{t}+3\right)=\log (t)+c_1 \\
\end{array}
Transform into an exact equation:- content=WolframAlpha["2f(t)f'(t)=f(t)+f(t)+tf'(t),f(1)=0",{{"Solution",2},"Content"},PodStates->{"Solution__Step-by-step solution","Solution__Transform into an exact equation"}]
复制代码
\begin{array}{l}
\text{Solve }2 f(t) \frac{df(t)}{dt}=t \frac{df(t)}{dt}+2 f(t)\text{, such that }f(1)=0: \\
\text{Rewrite the equation:} \\
-2 f(t)+(-t+2 f(t)) \frac{df(t)}{dt}=0 \\
\text{Let }R(t,f)=-2 f \text{ and }S(t,f)=2 f-t. \\
\text{This is not an exact equation, because }\left(\frac{\partial R(t,f)}{\partial f}=-2\right)\neq \left(-1=\frac{\partial S(t,f)}{\partial
t}\right). \\
\text{Find an integrating factor }\mu (f) \text{ such that }\mu (f) R(t,f)+\frac{df(t)}{dt} \mu (f) S(t,f)=0 \text{ is exact.} \\
\text{This means }\frac{\partial \text{}}{\partial f}(\mu (f) R(t,f))=\frac{\partial \text{}}{\partial t}(\mu (f) S(t,f)): \\
-2 f \frac{d\mu (f)}{df}-2 \mu (f) =-\mu (f) \\
\text{Isolate }\mu (f) \text{ to the left-hand side:} \\
\frac{\frac{\partial \mu (f)}{\partial f}}{\mu (f)} =-\frac{1}{2 f} \\
\text{Integrate both sides with respect to }f: \\
\log (\mu (f))=-\frac{\log (f)}{2} \\
\text{Take exponentials of both sides:} \\
\mu (f) =\frac{1}{\sqrt{f}} \\
\text{Multiply both sides of }-2 f(t)+\frac{df(t)}{dt} (-t+2 f(t))=0 \text{ by }\mu (f(t)): \\
-2 \sqrt{f(t)}+\frac{(-t+2 f(t)) \frac{df(t)}{dt}}{\sqrt{f(t)}} =0 \\
\text{Let }P(t,f)=-2 \sqrt{f} \text{ and }Q(t,f)=\frac{2 f-t}{\sqrt{f}}. \\
\text{This is an exact equation, because }\frac{\partial P(t,f)}{\partial f}=-\frac{1}{\sqrt{f}}=\frac{\partial Q(t,f)}{\partial t}. \\
\text{Define }g(t,f) \text{ such that }\frac{\partial g(t,f)}{\partial t}=P(t,f) \text{ and }\frac{\partial g(t,f)}{\partial f}=Q(t,f). \\
\text{Then, the solution will be given by }g(t,f)=c_1\text{, where }c_1\text{ is an arbitrary constant.} \\
\text{Integrate }\frac{\partial g(t,f)}{\partial t} \text{ with respect to }t \text{in order to find }g(t,f): \\
g(t,f)=\int -2 \sqrt{f} \, dt=-2 \sqrt{f} t+h(f)\text{ where }h(f)\text{ is an arbitrary function of }f. \\
\text{Differentiate }g(t,f) \text{ with respect to }f \text{in order to find }h(f): \\
\frac{\partial g(t,f)}{\partial f} =\frac{\partial \text{}}{\partial f}\left(-2 \sqrt{f} t+h(f)\right) =-\frac{t}{\sqrt{f}}+\frac{dh(f)}{df} \\
\text{Substitute into }\frac{\partial g(t,f)}{\partial f}=Q(t,f): \\
-\frac{t}{\sqrt{f}}+\frac{dh(f)}{df}=\frac{2 f-t}{\sqrt{f}} \\
\text{Solve for }\frac{dh(f)}{df}: \\
\frac{dh(f)}{df}=2 \sqrt{f} \\
\text{Integrate }\frac{dh(f)}{df} \text{ with respect to }f: \\
h(f)=\int 2 \sqrt{f} \, df=\frac{4 f^{3/2}}{3} \\
\text{Substitute }h(f) \text{ into }g(t,f): \\
g(t,f)=\frac{4 f^{3/2}}{3}-2 \sqrt{f} t \\
\text{The solution is }g(t,f)=c_1: \\
\frac{4 f^{3/2}}{3}-2 \sqrt{f} t=c_1 \\
\text{Solve for the unknown constants using the initial condition }f(1)=0: \\
\text{Substitute }t=1 \text{ into }\frac{4 f^{3/2}}{3}-2 \sqrt{f} t=c_1: \\
\frac{4 f^{3/2}}{3}-2 \sqrt{f} =c_1 \\
\text{Substitute }f(1)=0 \text{ into }\frac{4 f^{3/2}}{3}-2 \sqrt{f}=c_1: \\
0 =c_1 \\
\text{Solve for }c_1: \\
c_1 =0 \\
\text{Substitute }c_1=0 \text{ into }\frac{4 f^{3/2}}{3}-2 \sqrt{f} t=c_1: \\
\text{Answer:} \\
\frac{4 f^{3/2}}{3}-2 \sqrt{f} t =0 \\
\end{array} |
|