|
尝试做一下习题...
- 假设$e=\frac pq$($p,q\in\Bbb N ,\gcd(p,q)=1$),则$|e-\sum_{i=0}^{q-1}\frac1{q!}|=\frac1{q!}\left(\frac1{q+1}+\frac1{(q+1)(q+2)}+⋯\right)<\frac1{q!}\left(\frac1{q+1}+\frac1{(q+1)^2}+⋯\right)=\frac1{q·q!}<\frac1{q!}$
即$|\frac pq-\sum_{i=0}^{q-1}\frac1{q!}|<\frac1{q!}$
乘以$q!$后,左边是整数,右边是1,矛盾. - 将$(0,1)$等分为$n+1$个区间$(\frac{i}{n+1},\frac{i+1}{n+1}),i=0,1,⋯,n$,而$\{x\},\{2x\},⋯,\{nx\}\in(0,1)$,由鸽巢原理得$\exists p,q\in\{1,2,⋯,n\}:|\{px\}-\{qx\}|<\frac1{n+1}$,即$|(p-q)x-([px]-[qx])|<\frac1{n+1}$.
- 设$x=\frac mn(m,n\in\Bbb N,\gcd(m,n)=1)$.
$\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}}\iff|mq-np|<\frac{n}q$
若$\frac mn\ne\frac pq$,则左边≥1,故$q<n$.
对于每个$q$,满足$|qx-p|<\frac1q$的整数$p$只有有限个.得证. - $c=\frac1{2\sqrt2}$
设$[n\sqrt2]=p$,则$\sqrt2>\frac pn$,又$2-\frac{p^2}{n^2}>\frac1{n^2}$,所以
$\sqrt2-\frac pn=\frac{2-\frac {p^2}{n^2}}{\sqrt2+\frac pn}>\frac{\frac1{n^2}}{\sqrt2+\sqrt2}=\frac c{n^2}$
即$\{n\sqrt2\}=n\sqrt2-p>\frac cn$,所以$c$满足条件.
另一方面,设$c'>\frac1{2\sqrt2}$.
Pell方程$x^2-2y^2=-1$的整数解$(x_k,y_k)$由$x_k+y_k\sqrt2=(1+\sqrt2)(3+2\sqrt2)^k$给出.显然当$k→∞$时$y→∞$,所以$\exists k,(n,p)=(x_k,y_k)$使$n^2>\frac1{\frac1{c'^2}-\frac{2\sqrt2}{c'}}$,则$\frac{p^2}{n^2}=2-\frac1{n^2}>2+\frac1{c'^2}-\frac{2\sqrt2}{c'}=(\frac1{c'}-\sqrt2)^2$
所以$\frac pn>\frac1{c'}-\sqrt2$
$\sqrt2-\frac pn=\frac{2-\frac {p^2}{n^2}}{\sqrt2+\frac pn}=\frac{\frac1{n^2}}{\sqrt2+\frac pn}<\frac{c'}{n^2}$
即$\{n\sqrt2\}=n\sqrt2-p<\frac{c'}n$
所以$c'$不满足条件,所以$c$是满足条件的数中最大的.
|
|