|
本帖最后由 青青子衿 于 2021-12-8 17:15 编辑 \(\fbox{问题\(A\)}\):
已知非线性积分\(\color{red}{约束}\):
\[ \begin{equation*}\label{IE#1}\tag*{[integral equation#1]}
\int_0^x\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}} \rmd{x}=T_0
\end{equation*}\]
\((1)\)求\(x_{max}\);
\((2)\)当\(x=x_{max}\)时,\(F(x,y)=0\),求\(F(x,y)\).
这个积分约束实际上是有物理背景的。
其中令泛函\(\displaystyle T[\,y(\,\cdot\,)\,]=\int_0^x\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}} \rmd{x}\),则\(\ref{IE#1}\)可等价于:
\[T[\,y(\,\cdot\,)\,]=T_0\]
而泛函\(\displaystyle T[\,y(\,\cdot\,)\,]\)有明确的物理意义
\[T[\,y(\,\cdot\,)\,]=\int_0^T\rmd{t}=\int_0^S\frac{\rmd{s}}{v}=\int_0^x\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}} \rmd{x}\]
其中\(\rmd{s}=\sqrt{1+(y')^2}\rmd{x}\),\(v=\sqrt{2gy}\Leftarrow \frac12mv^2=mgy\)
泛函\(\displaystyle T[\,y(\,\cdot\,)\,]\)是将定义在右端点可变动的动区间\((0,x)\)上可求长的曲线映射为正数\(\overline{\hspace{4cm}}\)从起点沿着曲线下降所需的时间
换句话说问题\(A\)与问题\(B\)等价。
\(\fbox{问题\(B\)}\):
重力场下,质量为\(m\)的小球沿着曲线\(Γ\)运动,相同时间\(T\)内水平位移\(x\)的最大值\(x_{max}\)(用\(g\)、\(T\)表示)
\(\fbox{问题\(B\)的间接解法思路}\):
问题\(B\)题目给定的是:求相同时间\(T\)内水平位移\(x\)的最大值。
因此,可以先求出水平位移\(x\)相同时,时间\(T\)的最小值。
这样问题\(B\)又转换成了问题\(C\)。
\(\fbox{问题\(C\)}\):
重力场下,质量为\(m\)的小球沿着曲线\(Γ\)运动,相同水平位移\(x=X_0\)时间\(T\)的最小值\(T_{min}\)(用\(g\)、\(X_0\)表示)
\(\fbox{问题\(C\)的(非间接)解析解法(变分法)}\):
此问题属于单变量函数一端自由变动的变分问题
不妨取起始点为原点\(O(0,0)\),此问题归结为求泛函
\[T[\,y(\,\cdot\,)\,]=\int_0^b\color{blue}{\displaystyle\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}}\rmd{x}\]
的极值曲线\(\varGamma_0\)
其中\(\displaystyle F(y,y')=\color{blue}{\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}}\)称做泛函\(\displaystyle T[\,y(\,\cdot\,)\,]\)的核
由\(Euler\!-\!\!Lagrange\,Equation\):
\[\color{red}{\frac{\partial F}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y'}\right)=0}\]
并且由于泛函\(\displaystyle T[\,y(\,\cdot\,)\,]\)的核\(\displaystyle F(y,y')\)不显含\(x\),即\(\displaystyle\frac{\partial F}{\partial x}=0\),则:
\[
\begin{split}
&\color{orange}{\frac{\partial}{\partial x}\left(F-y'\frac{\partial F}{\partial y'}\right)}\\
\\
\\
\\
\\
\end{split}
\begin{split}
&\begin{gathered}
=&\frac{\partial F}{\partial x}&+&\frac{\partial F}{\partial y}y'&+\frac{\partial F}{\partial y'}y''-y''\frac{\partial F}{\partial y'}&-y'\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y'}\right)\\
=&&&\frac{\partial F}{\partial y}y'&&-y'\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y'}\right)\\
\end{gathered}\\
&=y'\color{red}{\left[\frac{\partial F}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y'}\right)\right]}=\color{red}0
\end{split}
\]
故:\[\color{orange}{\frac{\partial}{\partial x}\left(F-y'\frac{\partial F}{\partial y'}\right)}=\color{red}0\Rightarrow F-y'\frac{\partial F}{\partial y'}=c_0\]
即\[\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}-y'\frac{y'}{\sqrt{2gy[1+(y')^2]}}=c_0\\
\frac{1+(y')^2-(y')^2}{\sqrt{y[1+(y')^2]}}=\sqrt{2g}\cdot c_0\\
\frac{1}{y[1+(y')^2]}=2gc_0^2\\
\]
令\(\displaystyle c_1=\frac{1}{2gc_0^2}\)\(\color{blue}{\text{(其中\(c_1\)、\(g\)均为负值)}}\),分离变量得到:
\begin{align*}
\begin{split}
\frac{1}{y[1+(y')^2]}=\frac{1}{c_1}\\
y\left[1+\left(\frac{\rmd y}{\rmd x}\right)^2\right]=c_1&(\therefore c_1\leqslant y\leqslant0)\\
y\left(\frac{\rmd y}{\rmd x}\right)^2=c_1-y\\
\frac{y}{c_1-y}\left(\frac{\rmd y}{\rmd x}\right)^2=1\\
\end{split}\\
\\
\pm\sqrt{\frac{y}{c_1-y}}\rmd y=\rmd x\\
\end{align*}
再令\(\displaystyle y=c_1\sin^2\frac{\theta}{2}<0\),代入微分方程得到:
\[\rmd x=\pm c_1\sin^2\frac{\theta}{2}\rmd{\theta}=\frac{\pm c_1}{2}\left(1-\cos\theta\right)\rmd{\theta}\]
两边同时积分,得到:
\[x=\frac{\pm c_1}{2}\left(\theta-\sin\theta\right)+c_2\]
由于起点为原点,则\(c_2=0\),又由于\(\left(\theta-\sin\theta\right)\)是关于参数\(\theta\)的奇函数,\(x\)的符号可以归结于参数\(\theta\)。
故曲线\(\varGamma\)参数方程为
\[\begin{cases}
\displaystyle
x=\frac{-c_1}{2}\left(\theta-\sin\theta\right)\\
\displaystyle
y=c_1\sin^2\frac{\theta}{2}
\end{cases}
\Longleftrightarrow
\begin{cases}
\displaystyle
x=\frac{\left|c_1\right|}{2}\left(\theta-\sin\theta\right)\\
\displaystyle
y=\frac{-\left|c_1\right|}{2}\left(1-\cos\theta\right)
\end{cases}\]
\begin{cases}
\displaystyle
x=\frac{1}{4|g|c_0^2}\left(\theta-\sin\theta\right)\\
\displaystyle
y=-\frac{1}{4|g|c_0^2}\left(1-\cos\theta\right)
\end{cases}
\(\color{blue}{\text{其中\(g\)为负值}}\)
对于自由边界问题有自然边界条件:
\begin{align*}
&\text{引理\(1\) 若泛函\(\displaystyle J[\,y(\,\cdot\,)\,]=\int_{x_1}^{x_2}F\left
(x,y(x),y'(x)\right) \rmd{x}\)的容许曲线\(\varGamma\):\(y=y(x)\)一端固定,}\\
&\text{另一端在直线\(x=x_2\)上自由移动,则极值曲线\(\varGamma_0\):\(y=y_0(x)\)在移动端必满足\(\textbf{自然边界条件}\):}\\
&\\
&\qquad\qquad\qquad\qquad\qquad
\left.\frac{\partial F(x,y(x),y'(x))}{\partial y'}\right|_{x = x_2}=0
\end{align*}
因此,有
\begin{align*}
\left.\frac{\partial F(y(x),y'(x))}{\partial y'}\right|_{x =X_0}=\left.\frac{\partial}{\partial y'} \left[\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}\right]\right|_{x =X_0}=\frac{y'(X_0)}{\sqrt{2gy(X_0)[1+y'(X_0)^2]}}=0\\\,\\\,\\
\Rightarrow y'(X_0)=0\\\,\\
\left.y'(x)\right|_{x =X_0}=\left.\frac{\rmd y}{\rmd x}\right|_{x =X_0}=\left.\frac{\sin\theta}{1-\cos\theta}\right|_{\theta =\theta_0}=\left.\cot\frac{\theta}{2}\right|_{\theta =\theta_0}=\cot\frac{\theta_0}{2}=0\\\,\\\,\\
\Rightarrow \theta_0=\pi+2k\pi\\k\inZ\\
\end{align*}
可以看出曲线\(\varGamma\)具有周期性,之后的计算可以验证\(\pi+2k\pi\)时泛函\(\displaystyle T[\,y(\,\cdot\,)\,]\)取的都是极小值,而\(k=0\)时取得最小值,故\(\theta_0=\pi\)
\(\theta_0\)为右端点的参数值,所以代入曲线\(\varGamma\)方程的参数方程得:
\[ \left.x\right|_{x =X_0}=X_0=\left.\frac{1}{4|g|c_0^2}\left(\theta-\sin\theta\right)\right|_{\theta=\theta_0}=\frac{1}{4|g|c_0^2}\left(\pi-\sin\pi\right)=\frac{\pi}{4|g|c_0^2}\\\,\\
\Rightarrow c_0^2=\frac{\pi}{4|g|X_0}
\]
\(\color{blue}{\text{其中\(g\)为负值}}\)
极值曲线\(\varGamma_0\)参数方程为
\begin{cases}
\displaystyle
x=\frac{X_0}{\pi}\left(\theta-\sin\theta\right)\\
\displaystyle
y=-\frac{X_0}{\pi}\left(1-\cos\theta\right)
\end{cases}
令\(\displaystyle R=\frac{X_0}{\pi}\)
\(\displaystyle \rmd{s}=\sqrt{(\rmd{x})^2+(\rmd{y})^2}=\sqrt{(\frac{\rmd{x}}{\rmd\theta})^2+(\frac{\rmd{y}}{\rmd\theta})^2}\rmd\theta=\sqrt{R^2(1-\cos\theta)^2+R^2\sin^2\theta}\rmd\theta=R\sqrt{2(1-\cos\theta)}\rmd\theta\)
于是,求极值曲线\(\varGamma_0\)对应的泛函值:
\begin{gather*}
T[\,y_0(\,\cdot\,)\,]=\int_0^S\frac{\rmd{s}}{v}=\int_0^{\theta_0}
\frac{R\sqrt{2(1-\cos\theta)}\rmd\theta}{\sqrt{2gy}}=\int_0^{\theta_0}
\frac{R\sqrt{2(1-\cos\theta)}\rmd\theta}{\sqrt{2|g|R(1-\cos\theta)}}=\int_0^{\theta_0}
\sqrt{\frac{R}{|g|}}\rmd\theta=\sqrt{\frac{R}{|g|}}\theta_0\\\,\\
\Rightarrow T=\pi\sqrt{\frac{R}{|g|}}=\sqrt{\frac{\pi X_0}{|g|}}\\
\Rightarrow X_0=\frac{|g|T^2}{\pi}
\end{gather*}
故,当时\(k\)取零是正确的!
得到问题\(C\)时间\(T\)的最小值\(T_{min}=\displaystyle\sqrt{\frac{\pi X_0}{|g|}}\)
从而得到问题\(B\)水平位移\(x\)的最大值\(x_{max}=\displaystyle\frac{|g|T^2}{\pi}\)
于是乎,问题\(A\)也迎刃而解
\(\Large\color{red}{遗留问题}\):
问题\(A\)有没有直接解析解法(即正面求解的解析解法,非数值的近似解)?
感觉问题\(A\)转化为问题\(B\)的解法,依赖了物理意义,就像求高中用几何意义求定积分一样,感觉是管中窥豹…… |
|