Forgot password?
 Create new account
View 1751|Reply 8

\[\int_{0}^{+\infty}e^{-\frac{x^2}2}\mathrm{d}x\]

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-7-14 22:17:14 |Read mode
没想到高等数学第一帖由我来发啊?求下面积分的值:\[\int_{0}^{+\infty}e^{-\frac{x^2}2}\mathrm{d}x\]

4

Threads

23

Posts

154

Credits

Credits
154
QQ

Show all posts

pxchg1200 Posted at 2013-7-26 14:52:07
我们知道有
\[ \int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} \]
以下略。。。
Let's solution say the method!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2013-7-26 23:06:14
回复 2# pxchg1200

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-7-28 23:22:35
好一个水贴……

PS、代码可以写成 \int_{0}^{+\infty}e^{-\frac{x^2}2}\rmd{x}\[\int_{0}^{+\infty}e^{-\frac{x^2}2}\rmd{x}\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2013-8-20 22:14:07
回复 4# kuing
\int_{0}^{+\infty}e^{-\frac{x^2}2}\mathrm{d}x
这个代码和你的那个不同,显示效果却是一样的:
\[\int_{0}^{+\infty}e^{-\frac{x^2}2}\mathrm{d}x\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-20 22:26:38
回复 5# 其妙

是有区别的,不过这里表现得不明显
看这个例子:\int x\mathrm{d}x \ne \int x\rmd{x}
\[\int x\mathrm{d}x \ne \int x\rmd{x}\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2013-8-21 18:57:09
回复 6# kuing
嗯,还是\rmd{x}好,有点空隙。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-19 20:52:05
Last edited by hbghlyj at 2023-2-20 01:31:00Asymptote

en.wikipedia.org/wiki/Gaussian_integral
generalisation of Gaussian integral
multidimensional Gaussian integral
下面是Feynman integration的方法 (相关帖子)
As before, we simplify matters by computing the right half of the integral, $\int_0^{\infty} e^{-x^2} d x$. Set
$$
I(t):=\int_0^{\infty} \frac{e^{-x^2}}{1+(x / t)^2} d x .
$$
This is defined for all $t>0$, and we're hoping to determine $I(\infty)$. We simplify this integral by making the natural substitution:
$$
I(t)=t \int_0^{\infty} \frac{e^{-t^2 x^2}}{1+x^2} d x
$$
Right away this tells us new information about $I(t)$, for example, that
$$\tag2\label2
\lim _{t \rightarrow 0} \frac{I(t)}{t}=\frac{\pi}{2} .
$$
(In fact, the left hand side of this is $I^{\prime}(0)$, but we won't make use of this below.) To apply Feynman's trick we want to find $I^{\prime}(t)$, but if we do this naively the outcome will be ugly. To simplify matters, we recall our warm-up example $G(t)$, in which case differentiating simplified the integral because the denominator cancelled! Inspired by this, we instead work with the function
$$
e^{-t^2} I(t)=t \int_0^{\infty} \frac{e^{-t^2\left(1+x^2\right)}}{1+x^2} d x
$$
Finally, to avoid the product rule we divide both sides by $t$. Having thus renormalized $I$, we differentiate:
$$
\frac{d}{d t}\left(t^{-1} e^{-t^2} I(t)\right)=\int_0^{\infty}-2 t e^{-t^2\left(1+x^2\right)} d x=-2 e^{-t^2} \int_0^{\infty} e^{-u^2} d u=-2 e^{-t^2} I(\infty)
$$
Now, somewhat ridiculously, we undo what we just did by integrating both sides:
$$
\underbrace{\int_0^{\infty} \frac{d}{d t}\left(t^{-1} e^{-t^2} I(t)\right) d t}_{=-\lim _{t \rightarrow 0} \frac{I(t)}{t}}=\underbrace{\int_0^{\infty}-2 e^{-t^2} I(\infty) d t}_{=-2 I(\infty)^2}
$$
Since we computed the left hand side in \eqref{2}, we deduce $I(\infty)^2=\frac{\pi}{4}$. It follows that $I(\infty)=\frac{\sqrt{\pi}}{2}$, whence
$$
\int_{-\infty}^{\infty} e^{-x^2} d x=\sqrt{\pi}
$$

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-19 22:42:15
hbghlyj 发表于 2023-2-19 13:52
Inspired by this, we instead work with the function
$$
e^{-t^2} I(t)=t \int_0^{\infty} \frac{e^{-t^2\left(1+x^2\right)}}{1+x^2} d x
$$
这里没有证$\int_0^{\infty} \frac{e^{-t^2\left(1+x^2\right)}}{1+x^2} d x$为什么收敛.
Proof2有证明:
Then, we have: \(\displaystyle \frac {e^{-\lambda^2 (1 + x^2) } } {1 + x^2} \le \frac 1 {1 + x^2}\) for each $x∈\Bbb R$.
Note that \(\displaystyle \int_0^\infty \frac 1 {x^2 + 1} \rmd x = \frac \pi 2\)
So by the Comparison Test for Improper Integral:  $\displaystyle \int_0^\infty \frac {e^{-\lambda^2 (1 + x^2) } } {1 + x^2} \rmd x$ converges.

手机版Mobile version|Leisure Math Forum

2025-4-21 13:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list