|
本帖最后由 hbghlyj 于 2023-3-1 13:36 编辑 Let \[I=\iiint_{[0,1]^3}\frac2{\left(1+x^{2}+y^{2}+z^2\right)^{2}}\mathrm{d}x\mathrm{d}y\mathrm{d}z\]we want to prove $I=\frac{\pi^2}{16}$
This integral is equal to the integral over $[0,1]^4$: (since the integrand is independent of $t$.)
\[I=\iint\!\!\!\iint_{[0,1]^4}\frac{2}{\left(x^2+y^2+z^2+1\right)^2}dxdydzdt\]
By calculations in 4#, divergence theorem tells us
\[I=\iiint_{\partial[0,1]^4}\frac{(x,y,z,-t)}{x^2+y^2+z^2+1}\]
Note that $\partial[0,1]^4$ is the union of 8 cubes:
$C_{1,0}=\{0\}\times[0,1]\times[0,1]\times[0,1]$
$C_{1,1}=\{1\}\times[0,1]\times[0,1]\times[0,1]$
$C_{2,0}=[0,1]\times\{0\}\times[0,1]\times[0,1]$
$C_{2,1}=[0,1]\times\{1\}\times[0,1]\times[0,1]$
$C_{3,0}=[0,1]\times[0,1]\times\{0\}\times[0,1]$
$C_{3,1}=[0,1]\times[0,1]\times\{1\}\times[0,1]$
$C_{4,0}=[0,1]\times[0,1]\times[0,1]\times\{0\}$
$C_{4,1}=[0,1]\times[0,1]\times[0,1]\times\{1\}$
Calculate the surface integrals ("flux" through the surface)
\[\iiint_{C_{1,0}}\frac{(0,y,z,-t)}{0^2+y^2+z^2+1}\cdot(-1,0,0,0)=0\]
Similarly, the integral over $C_{2,0},C_{3,0},C_{4,0}$ are zero.
\begin{align*}
\iiint_{C_{1,1}}&\frac{(1,y,z,-t)}{1^2+y^2+z^2+1}\cdot(1,0,0,0)
\\&=\iiint_{[0,1]^3}\frac{1}{y^2+z^2+2}dydzdt
\\&=\iint_{[0,1]^2}\frac{1}{y^2+z^2+2}dydz
\\&=\int_0^1\int_0^1\int_0^{\infty } \exp \left(-t \left(y^2+z^2+2\right)\right) \, dtdydz
\\&=\int_0^{\infty } \exp \left(-2t\right) \left(\int_0^1\exp\left(-ty^2\right)dy\right)\left(\int_0^1\exp\left(-tz^2\right)dz\right)dt
\\\small\text{Using }&\small\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_0^xe^{-t^2} dt
\\&=\frac{\pi}4\int_0^{\infty }{\exp \left(-2t \right)\over t}\operatorname{erf}^2(\sqrt t) dt
\end{align*}By symmetry of $x,y,z$ the integral over $C_{1,1},C_{2,1},C_{3,1}$ should be the same.
\begin{align*}
\iiint_{C_{4,1}}&\frac{(x,y,z,-1)}{x^2+y^2+z^2+1}\cdot(0,0,0,1)\\
&=-\iiint_{[0,1]^3}\frac1{x^2+y^2+z^2+1}dxdydz\\
&=-\int_0^1\int_0^1\int_0^1\int_0^\infty\exp\left(-t(x^2+y^2+z^2+1)\right)\,dtdxdydz
\\&=-\int_0^{\infty } \exp \left(-t\right)\left(\int_0^1\exp\left(-tx^2\right)dx\right)\left(\int_0^1\exp\left(-ty^2\right)dy\right)\left(\int_0^1\exp\left(-tz^2\right)dz\right)dt
\\\small\text{Using }&\small\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_0^xe^{-t^2} dt
\\&=-\frac{\pi^{3/2}}8\int_0^{\infty }{\exp \left(-t \right)\over t^{3/2}}\operatorname{erf}^3(\sqrt t) dt
\end{align*}
Adding up, using this result,
\begin{align*}
I&=3\cdot\frac{\pi}4\int_0^{\infty }{\exp \left(-2t \right)\over t}\operatorname{erf}^2(\sqrt t) dt-\frac{\pi^{3/2}}8\int_0^{\infty }{\exp \left(-t \right)\over t^{3/2}}\operatorname{erf}^3(\sqrt t) dt
\\&=\frac{\pi^2}{16}
\end{align*} |
|