Forgot password?
 Create new account
Search
View: 1827|Reply: 12

[几何] 2020年北京卷第10题 $\pi $的近似值的表达式

[Copy link]

830

Threads

4866

Posts

310K

Credits

Credits
36180

Show all posts

isee Post time 2020-7-17 23:03 |Read mode
2020年3月14日是全球首个国际圆周率日($\pi $ Day).历史上,求圆周率$\pi $的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数$n$充分大时,计算单位圆的内接正$6n$边形的周长和外切正$6n$边形(各边均与圆相切的正$6n$边形)的周长,将它们的算术平均数作为$2\pi $的近似值.按照阿尔·卡西的方法,$\pi $的近似值的表达式是(    )

A.$3n\left( \sin \frac{30^\circ}n+\tan \frac{30^\circ}n \right)$

B.$6n\left( \sin \frac{30^\circ}n+\tan \frac{30^\circ }n \right)$

C.$3n\left( \sin \frac{60^\circ }n+\tan \frac{60^\circ }n \right)$

D.$6n\left( \sin \frac{60^\circ}n+\tan \frac{60^\circ}n \right)$

2020年北京卷第10题


丢脸啊,偶就取n=1,算出个B,结果答案给的是A。

15

Threads

958

Posts

110K

Credits

Credits
12454

Show all posts

色k Post time 2020-7-17 23:14
令n无穷大利用极限知识就知道只有A啊

830

Threads

4866

Posts

310K

Credits

Credits
36180

Show all posts

 Author| isee Post time 2020-7-17 23:16
回复 2# 色k

我打~~~~

471

Threads

946

Posts

9842

Credits

Credits
9842

Show all posts

青青子衿 Post time 2020-7-29 11:23
回复 3# isee
\begin{align*}
&\,\lim\limits_{n\to+\infty}3n\left( \sin\frac{\pi}{6n}+\tan \frac{\pi}{6n} \right)\\
=&\lim\limits_{n\to+\infty}3n\sin\frac{\pi}{6n}\left(1+\dfrac{\tan \frac{\pi}{6n}}{ \sin\frac{\pi}{6n}} \right)\\
=&\lim\limits_{n\to+\infty}\dfrac{\sin\frac{\pi}{6n}}{\frac{1}{3n}}\left(1+\dfrac{\tan \frac{\pi}{6n}}{ \sin\frac{\pi}{6n}} \right)\\
=&\lim\limits_{t\to0}\dfrac{\sin\left(\frac{\pi}{6}t\right)}{\frac{1}{3}t}\left[1+\dfrac{\tan\left(\frac{\pi}{6}t\right)}{ \sin\left(\frac{\pi}{6}t\right)} \right]\\
=&\lim\limits_{t\to0}\dfrac{\sin\left(\frac{\pi}{6}t\right)}{\frac{2}{\pi}\frac{\pi}{6}t}\left[1+\dfrac{\tan\left(\frac{\pi}{6}t\right)}{ \sin\left(\frac{\pi}{6}t\right)} \right]=\dfrac{1}{\frac{2}{\pi}}\cdot2=\pi\\
\end{align*}

730

Threads

110K

Posts

910K

Credits

Credits
93648
QQ

Show all posts

kuing Post time 2020-7-29 13:47
\[\lim_{n\to\infty}3n\sin\frac\pi{6n}=\frac\pi2=\lim_{n\to\infty}3n\tan\frac\pi{6n}\implies\lim_{n\to\infty}3n\left( \sin\frac\pi{6n}+\tan\frac\pi{6n} \right)=\pi.\]

107

Threads

226

Posts

2893

Credits

Credits
2893

Show all posts

facebooker Post time 2020-7-29 14:35
一看着题目还以为考L'hospital呢

471

Threads

946

Posts

9842

Credits

Credits
9842

Show all posts

青青子衿 Post time 2024-3-14 21:47
派day快乐

\begin{gather*}
\sum_{k\>\>\!\!=-\infty}^{+\infty}\frac{1}{\cosh ^2\!\left(k\pi-\frac{\pi }{2}\right)}=\frac{1}{\pi}
\end{gather*}

830

Threads

4866

Posts

310K

Credits

Credits
36180

Show all posts

 Author| isee Post time 2024-3-14 23:04
青青子衿 发表于 2024-3-14 21:47
派day快乐

\begin{gather*}

竟然是从 $-\infty$ 开始的
isee=freeMaths@知乎

3150

Threads

8388

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65413
QQ

Show all posts

hbghlyj Post time 2024-3-14 23:40
isee 发表于 2024-3-14 15:04
竟然是从 $-\infty$ 开始的


cosh 是偶函數,所以若从k=1開始,值是1/(2π)?

3150

Threads

8388

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65413
QQ

Show all posts

hbghlyj Post time 2024-3-15 07:24

有关π的级数

Viète公式
反复运用$\sin x=2\sin {\frac {x}{2}}\cos {\frac {x}{2}}$得,$\forall n\in\mathbb N^+$,$\sin x=2^{n}\sin {\frac {x}{2^{n}}}\left(\prod _{i=1}^{n}\cos {\frac {x}{2^{i}}}\right)$.
令$n\to\infty$得${\frac {\sin x}{x}}=\cos {\frac {x}{2}}\cdot \cos {\frac {x}{4}}\cdot \cos {\frac {x}{8}}\cdots$,这就是"sinc函数的欧拉公式".
令$x=\frac\pi2$得${\frac {2}{\pi }}=\cos {\frac {\pi }{4}}\cdot \cos {\frac {\pi }{8}}\cdot \cos {\frac {\pi }{16}}\cdots$
由半角公式$\cos {\frac {x}{2}}={\sqrt {\frac {1+\cos x}{2}}}$将每一项用其前一项表示得$${\frac {2}{\pi }}={\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots$$这就是"π的Viète公式",或者写成$$\lim _{n\rightarrow \infty }\prod _{i=1}^{n}{\frac {a_{i}}{2}}={\frac {2}{\pi }}$$其中$a_{1}={\sqrt {2}},a_{n}={\sqrt {2+a_{n-1}}}$.
也可以从 Viète 公式推导出下面的公式,它仍然涉及嵌套的 2 平方根,但只使用一次乘法$$\pi =\lim _{k\to \infty }2^{k}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+{\sqrt {2+{\sqrt {2+\cdots +{\sqrt {2}}}}}}}}}}}} _{k{\text{重}}}$$或者写成$$\pi=\lim _{k\to \infty }2^{k}{\sqrt {2-a_{k}}}$$其中$a_{1}=0,a_{k}=\sqrt {2+a_{k-1}}$.

3150

Threads

8388

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65413
QQ

Show all posts

hbghlyj Post time 2024-3-15 07:25

有关π的级数

在$\pi$的连分数表达中,$\frac{22}7$是它的一个渐近分数.纵使阿基米德并非这个近似值的始创者,但他证明了$22 \over 7$大于圆周率.他以$22 \over 7$大于外切正96边形的周界与该圆直径之比作证明.以下是另一个$\frac {22}{7}>\pi$的证明,所用到的只是微积分的基本技巧.
$$0<\int_0^1\frac{x^4(1-x)^4}{1+x^2}\,\mathrm dx=\frac{22}{7}-\pi$$故$\frac {22}{7}>\pi$.
把1代入分母中的$x$,可轻易取得积分的下限;把0代入分母中的$x$,可取得积分的上限:
$\displaystyle{1 \over 1260}<\int _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}}\,dx<{1 \over 630}$.
结果得出${22 \over 7}-{1 \over 630}<\pi <{22 \over 7}-{1 \over 1260}$.
也许这是计算$\pi$值至小数后3位的最快和最基本的方法.

3150

Threads

8388

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65413
QQ

Show all posts

hbghlyj Post time 2024-3-15 07:25
罗见今《明安图和他的幂级数展开式》数学传播34卷1期
1701年,法国耶稣会传教士杜德美(Pierre Jartoux, 1668-1720)来到中国,他带来了由艾萨克·牛顿和J.格雷戈里创建的三个三角函数无穷级数$$\pi =3\left(1+{\frac {1}{4\cdot 3!}}+{\frac {3^{2}}{4^{2}\cdot 5!}}+{\frac {3^{2}\cdot 5^{2}}{4^{3}\cdot 7!}}+\cdots \right)$$$$\sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots $$$$\operatorname {vers} x={\frac {x^{2}}{2!}}-{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots$$这些计算π的"捷法"只涉及乘法和加减运算,速度远超传统刘徽割圆术涉及的平方根计算,因而激起了中国数学家的极大兴趣.然而杜德美没有将推导这些无穷级数的方法带来中国.明安图怀疑西方人不愿分享他们的秘密,于是他着手进行这项工作,前后历时30年,完成了书稿《割圆密率捷法》,他在书中创建几何模型用于获得三角函数无穷级数,不仅推出杜德美的三个无穷级数,还发现了六个新的无穷级数.在这个过程中,他发现和应用卡塔兰数.

由二分弧通弦率数求全弧通弦率数法
213321d7m4a4ylssx71jzk.jpg
如图BCD为全弧,令半径为1,则AB=AC=AD=1;BD为通弦,BC,CD为二分弧.作BG=BC=x,DH=DC,则$BD=2x-GH$,作EJ=EF,FK=FJ;延长BE直线至L,并令EL=BE;作BF=BE,使F在AE线上.延长BF至M,BF=MF;显然LM通过C点.将三角形BLM以BM为轴翻转至BMN,C点重合G,L点重合N.将三角形NGB以BN为轴翻转至BNI;显然BI=BC.
$AB:BC:CI=1:x:x^2$
作∠CBG之平分线BM,并令BM=BC;连GM,CM;作CO=CM交BM于O;作MP=MO;作NQ=NR,R为BN与AC之交点.$∠EBC=\frac12∠CAE=\frac12∠EAB$,∴∠EBM=∠EAB,于是得一系列相似三角形:ABE,BEF,FJK,BLM,CMO,MOP,CGH,而且△CMO≌△EFJ;于是得
连比第一率:AB=AC=AD=AE
连比第二率:BE=BC=BF=C
连比第三率:EF=CM
连比第四率:FJ
连比第五率:JK=OP
$AB:BE:EF:FJ:JK=1:p:p^2:p^3:p^4$
1:BE=BE:EF;即$EF=BE^2$,$1:BE^2=x:GH$,于是$GH=x\cdot BE^2=xp^2$,即$BD=2x -xp^2$
因为筝形ABEC与BLIN相似,$EF=LC=CM=MG=NG=IN$,$LM+MN=CM+MN+IN=CI+OP=JK+CI$$$\therefore  AB:(BE+EC)=BL:(LM+MN)$$ 即 $ AB:BL=BL:(CI+JK)$
令$BL=q$$$AB:BL:(CI+JK)=1:q:q^2$$$$JK=p^4$$$$CI=y^2$$$$CI+JK=q^2=BL^2=(2BE)^2=(2p)^2=4p^2$$
由此得$q^2=4p^2$ 或$p=\frac{q}{2}$
又$CI+JK=x^2+p^4=q^2$,代入$p$值得:
$x^2+\frac{q^4}{16}=q^2$,于是
$$x^2=q^2-\frac{q^4}{16}$$
平方之,两边除以16:
$$\frac{(x^2)^2}{16}=\frac{(q^2-\frac{q^4}{16})^2}{16}=\sum_{j=0}^2 (-1)^j{2 \choose  j}\frac{q^{2(2+j)}}{16^j}$$
即$\frac{x^4}{16} = \frac{q^4}{16}-\frac{q^6}{128}+\frac{q^8}{4096}{16}$
依次类推$$\frac{x^{2n}}{16^{n-1}}= \sum_{j=0}^n (-1)^j{n \choose j}\frac{q^{2(n+j)}}{16^{n+j-1}}$$将下列二式相加,可以消去$q^4$项:$$x^2=q^2-\frac{q^4}{16}$$$$\frac{x^4}{16} = {\frac{q^4}{16}-\frac{2q^6}{16^2}+\frac{q^8}{4096}}{16}$$$$x^2+\frac{x^4}{16} = q^2-\frac{q^6}{128}+\frac{q^8}{4096}$$同理$$x^2+\frac{x^4}{16}+\frac{2x^6}{16^2} = q^2-\frac{5q^8}{4096}+\frac{3q^{10}}{32768}-\frac{q^{12}}{524288}$$.......$
\begin{align}
& x ^ 2 + \frac{x^4}{16} + \frac{2 x^6}{16^2} + \frac{5x^8}{16^3} + \frac{14 x^{10}}{16^4} + \frac{42x^{12}}{16^5} \\[10pt]
{} & +\frac{132 x^{14}}{16^6} + \frac{429x^{16}}{16^7} + \frac{1430x^{18}}{16^8} + \frac{4862 x^{20}}{16^9} \\[10pt]
& {} + \frac{16796 x^{22}}{16^{10}} + \frac{58786 x^{24}}{16^{11}} + \frac{208012 x^{26}}{16^{12}} \\[10pt]
& {} + \frac{742900 x^{28}}{16^{13}} + \frac{2674440 x^{30}}{16^{14}} + \frac{9694845 x^{32}}{16^{15}} \\[10pt]
& {} + \frac{35357670 x^{34}}{16^{16}} + \frac{129644790 x^{36}}{16^{17}} \\[10pt]
& {} + \frac{477638700 x^{38}}{16^{18}} + \frac{1767263190 x^{40}}{16^{19}} + \frac{6564120420 x^{42}}{16^{20}} \\[10pt]
& = q^2 + \frac{62985}{8796093022208} q^{24}
\end{align}$展开式各项分子的系数 1,1,2,5,14,42,132……是卡塔兰数.
因而得到$q^2=\sum_{n=1}^\infty C_n\cdot\frac{x^{2n}}{4^{2n-2}}$.其中$C_n = \frac{1}{n+1}{2n \choose n}$为卡塔兰数.
明安图利用他首创的递推关系$$C_n=\sum_k (-1)^k{n-k  \choose  k+1}C_{n-k}$$$\because BC:CG:GH=AB:BE:EF=1:p:p^2=x:px:p^2x$$$\therefore GH:=p^2x=(\frac{q}{2})^2x=\frac{q^2x}{4}$$代入$BD=2x-GH$得到.$BD=2x-\frac{x}{4}q^2$$$y_2=2x-\sum_{n=1}^\infty C_n\cdot\frac{x^{2n+1}}{4^{2n-1}}$$三角学意义
在图一中令$\angle BAE=α,\angle BAC=2α$
$x=BC=\sin α$
$q=BL=2BE=4\sin\frac α2$
$BD=2\sin2α$
明安图获得的$BD=2x -x\cdot BE^2$就是$$\sin(2\alpha)=2\sin\alpha-\sum_{n=1}^\infty C_n\frac{(\sin\alpha)^{2n+1}}{4^{n-1}}$$$$=2\sin(\alpha)-\frac{2\sin(\alpha)^3}{1+\cos(\alpha)}$$$$q^2=BL^2=\sum_{n=1}^\infty C_n\cdot\frac{x^{2n}}{4^{2n-2}}$$
即$\sin(\frac{\alpha}{2})^2=\sum_{n=1}^\infty C_n\cdot\frac{(\sin\alpha)^{2n}}{4^{2n}}$

3150

Threads

8388

Posts

610K

Credits

$\style{scale:11;fill:#eff}꩜$

Credits
65413
QQ

Show all posts

hbghlyj Post time 2024-3-15 07:27
1https://www.zhihu.com/question/49249958
https://www.zhihu.com/column/p/25059661
\[\int_0^1 {{e^{i\pi x}}} {\mkern 1mu} {x^x}{(1 - x)^{1 - x}}{\mkern 1mu} dx = \frac{e}{2}\frac{\pi }{3}\frac{i}{4}\]
神奇的把$0,1,2,3,4,i,e,\pi,x^x$结合在了一起.

可以用Mathematica验证下...

  1. NIntegrate[E^(I Pi x)x^x (1-x)^(1-x),{x,0,1},WorkingPrecision-&gt;40]-I Pi E /24.0
Copy the Code
取围道$C$:

\begin{align*}

f(z) &=e^{i \pi+z \log z+(1-z) \log (1-z)} \\

I &=\int_{0}^{1} e^{i \pi x} x^{x}(1-z)^{1-x} \mathrm{~d} x=\frac{1}{2} \oint_{C} f(z) \mathrm{d} z \\

&=\frac{1}{2} \times 2 \pi i \underset{z=0}{\operatorname{Res}} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\color{red}{\boxed{-\pi i}} \underset{z=\infty}{\operatorname{Res}} f(z) \\
f\left(\left.z\right|_{\infty}\right) & \mapsto-e z+\frac{e}{2}+\frac{e}{24 z}+\frac{e}{48 z^{2}}+\frac{73 e}{5760 z^{3}}+O\left(\frac{1}{z}\right)^{4} \\

\text { Inv } f\left(\left.z\right|_{\infty}\right) & \mapsto-\frac{z}{e}+\frac{1}{2}\color{red}{\boxed{-\frac{e}{24 z}}}-\frac{e^{3}}{1920 z^{3}}+O\left(\frac{1}{z}\right)^{4} \\
&\color{red}{\boxed{\bigstar I=(-\pi i)\left(-\frac{e}{24}\right)=\frac{e}{2} \frac{\pi}{3} \frac{i}{4}}}
\end{align*}


是有很多吃瓜群众仍不满足,执意要把欧拉常数$\gamma$塞进去...



这个积分很精密的,禁不住这么魔改.不过还真有能塞一起的式子,不但能把$e,\pi,\gamma$一网打尽还能塞个Glaisher常数$\rm A$进去.
\[\zeta'( - 2) = \sum\limits_{k = 1}^\infty  {\frac{{\ln k}}{{{k^2}}}}  = \ln \prod\limits_{k = 1}^\infty  {\sqrt[{{k^2}}]{k}}  = \zeta (2)\ln \left( {\frac{{{{\rm A}^{12}}}}{{2\pi {e^\gamma }}}} \right)\]


Glaisher常数$\rm A$有很多定义,简便起见可以定义为:

\[\ln {\rm A} = \frac{1}{{12}} - \zeta'( - 1)\]


---------------------------------------------------------



又出现了$1/12$,这个数也是个特殊的数------全体自然数之和!
\[0+1+2+3+\cdots \hat{=} \zeta(-1)=-\frac{1}{12}\]


进入证明步骤.


首先有黎曼泛函方程定义式(Riemann's Functional Equation):

\[\pi \zeta = {(2\pi )^s}\zeta (1 - s)\sin \left( {\frac{{\pi s}}{2}} \right)\Gamma (1 - s)\]
这是定义就不用证了

两边求导,这是求导基本功. \begin{aligned} \pi \zeta^{\prime}(s)= & -(2 \pi)^s \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta^{\prime}(1-s) \\ & +2^{s-1} \pi^{s+1} \zeta(1-s) \cos \left(\frac{\pi s}{2}\right) \Gamma(1-s) \\ & +(2 \pi)^s \log (2 \pi) \zeta(1-s) \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \\ & -(2 \pi)^s \zeta(1-s) \sin \left(\frac{\pi s}{2}\right) \Gamma^{\prime}(1-s) \end{aligned} 然后令$s=−1$.
Good,现在我们得到了一个新问题,$\Gamma'(2)$是多少?



---------------------------------------------------------
$\zeta (2) = \frac{{{\pi ^2}}}{6}$已经被我归类为常识了.巴塞尔问题的23个解法,随便挑一个看看就会了.看不懂的话StackExchange上也有50多个解法...我怀疑勾股定理的证法都没这个多...



---------------------------------------------------------


还是根据定义式两边求导然后令$z=1$: \begin{aligned} \Gamma(z+1) & =z \Gamma(z) \\ \Gamma^{\prime}(z+1) & =z \Gamma^{\prime}(z)+\Gamma(z) \\ \Gamma^{\prime}(2) & =\Gamma^{\prime}(1)+\Gamma(1)=1+\Gamma^{\prime}(1) \end{aligned}Good,现在我们又多了个问题,$\Gamma'(1)$是多少?


当然还是两边求导大法啦:
\begin{aligned}

-\log (\Gamma(z)) &=\log (z)+\gamma z+\sum_{n=1}^{\infty}\left[\log \left(1+\frac{z}{n}\right)-\frac{z}{n}\right] \\

-\frac{\Gamma^{\prime}(z)}{\Gamma(z)} &=\frac{1}{z}+\gamma+\sum_{n=1}^{\infty}\left[\frac{1
1+z / n}-\frac{1}{n}\right] \quad z \mapsto 1 \\
-\Gamma^{\prime}(1) &=1+\gamma+\sum_{n=1}^{\infty}\left[\frac{1}{n+1}-\frac{1}{n}\right] \\
&=1+\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
&=\gamma
\end{aligned}

Ok,$\Gamma'(1)=1-\gamma$然后全部塞回去解方程就行.
\begin{aligned}

2 \pi^{2}\left(\frac{1}{12}-\ln \mathrm{A}\right) &=\zeta^{\prime}(2)-\log (2 \pi) \zeta(2)+\zeta(2)(1-\gamma)\\ \zeta^{\prime}(2) &=2 \pi^{2}\left(\frac{1}{12}-\ln \mathrm{A}\right)-\frac{\pi^2}{6}(1-\gamma-\ln 2 \pi) \\
&=\frac{\pi^{2}}{6}\left(\ln 2 \pi+\ln e^{\gamma}-12 \ln \mathrm{A}\right) \\
&=\zeta(2) \ln \frac{2 \pi e^{\gamma}}{\mathrm{A}^{12}} \quad \text { Q.E.D }
\end{aligned}

手机版|悠闲数学娱乐论坛(第3版)

2025-3-6 03:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list